Technical and Economic Analysis of Hydrogen Refueling Stations

Amgad Elgowainy, Marianne Mintz, Jerry Gillette, Mark Paster, Matthew Hooks (TIAX), Bruce Kelly (Nexant)

National Hydrogen Association
Sacramento, CA
April 1, 2008
The submitted presentation has been created by Argonne National Laboratory, a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC, under Contract No. DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said presentation to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.
Presentation Overview

- Refueling Station Configuration Options
- Station Storage Requirements
- Design and Cost Assumptions
- Optimization
- Results
- Summary and Conclusions
Gaseous Refueling Station Configuration Options

Dispensing
Cascade Charging System
Compression
Pipeline Supply
Storage

Dispensing
Cascade Charging System
Compression
Tube-Trailer
Liquid Refueling Station Configuration for Liquid H2 Delivery by Trucks
Station MINIMUM Storage Requirement

- Refueling station storage requires a **minimum** of 1/3 of the station daily demand

![Friday Demand Profile Graph]

- Average: ~30% of Daily Demand
- Tube-trailer delivery
- Liquid truck delivery
- Low pressure vessels pipeline delivery

At refueling station
STATION DESIGN AND COST ASSUMPTIONS
Cascade Charging System (NOT Effective for Storage)

- ASTM SA372, Grade J, Class 70 low alloy steel
- Vessels are 16 inches diameter, 30 feet long
 - 6500 psia vessel holds 67 kg
 - $926/kg of hydrogen (uninstalled)

- Recommended inputs to H2A model
 - $1204/kg of hydrogen, including shipping, auxiliaries, and installation
 - No economies of scale
Low Pressure Gaseous Storage

- Gas storage vessel design
 - SA516, Grade 70; 2,500 psia; 2.5 in. wall thickness
 - 4.1 ft. diameter, 24.9 ft. long, 91 kg hydrogen capacity
 - $2.30/lb of steel; $900/kg of hydrogen (uninstalled)

- Recommended inputs to H2A model
 - $1170/kg of hydrogen, including shipping, auxiliaries, and installation
 - No economies of scale
Compressor Cost

\[y = 4.2058x + 18.975 \]

- **Reciprocating**

<table>
<thead>
<tr>
<th>Capacity (kg/hr)</th>
<th>Total Uninstalled Cost ($K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>200</td>
</tr>
<tr>
<td>150</td>
<td>300</td>
</tr>
<tr>
<td>200</td>
<td>400</td>
</tr>
<tr>
<td>250</td>
<td>500</td>
</tr>
<tr>
<td>300</td>
<td>600</td>
</tr>
</tbody>
</table>
Refueling Station Optimization: Balance between Cascade & Compressor Capacities

Optimum:
Compressor Capacity / Ave. Station Hourly Demand Rate ~ 2.0
Cascade Capacity / Ave. Station Daily Demand ~ 0.15

![Graph showing hourly percent of daily demand with data points for 4.16%, 3.64%, and 7.8% at specific hours.]
Validation: Independent Models Produced Same Result Despite Small Variations in Assumptions

Station Average Daily Capacity [kg/day]

C = Compressor capacity
AHD = Average Hourly Demand
CASCAP = Cascade capacity
ADD = Average Daily Demand
RESULTS
GH2 Refueling Station Cost Analysis

- Refueling station cost is a major contributor to the total delivery cost
GH2 Refueling Station Cost Analysis

- Installed capital cost represents the majority of the refueling station cost

![Breakdown of Total Refueling Station Cost](image)

- Total Installed Capital: 75%
- Other Capital: 17%
- Total O&M: 8%
GH2 Refueling Station Cost Analysis

- Compressors, Cascade System, and GH2 storage are the major component contributing to the total capital cost.
GH2 Refueling Station Cost Analysis

- Compressors, Cascade System, and GH2 storage are the major components contributing to total capital cost

% Cost Contribution of Refueling Station Components to Total Installed Capital
[500 kg/day Station]

- Compressor(s): 31%
- Cascade: 26%
- Storage: 26%
- Dispensers: 2%
- Electrical: 5%
- Controls and Safety: 10%

Note: Compressor cost include one backup compressor
Summary and Conclusions

- A methodology was developed to design and optimize gaseous and liquid hydrogen refueling stations.

- Refueling station compressors and cascade system were sized to minimize total station cost.

- Refueling station storage requires a minimum of 1/3 of the station daily demand.

- Compressors, cascade system, and GH2 storage are the major components contributing to the total capital cost of hydrogen delivery.

- The total cost of the refueling station is a major contributor to the total delivery infrastructure cost.
Version 2.0 of the H2A Delivery Models will be Published SOON!

Thanks to other members of H2A/Nexant project team, USDOE Delivery Tech Team and OFCHIT

Questions??

aelgowainy@anl.gov