

Hydrogen Quality NHA Conference 2008

Jacquelyn Birdsall Project Engineer, CaFCP April 1, 2008

Acknowledgements

Thank you to CaFCP staff and members, specifically:

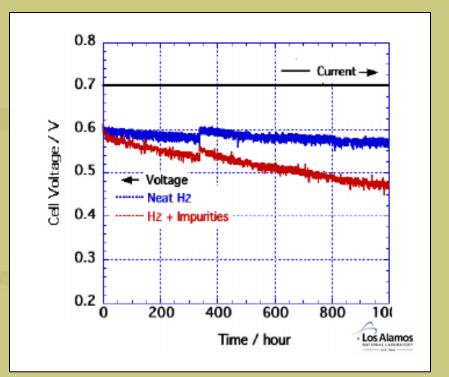
- Matthew Forrest, Daimler
- Raul Dominguez, South Coast AQMD
- Tony Estrada, PG&E

And to:

- J.P. Hsu, Smart Chemistry
- Bob Boyd, Linde Group
- Kristin Macey and John Mough, California DMS

Defining hydrogen quality

The level of impurities in hydrogen fuel, specifically constituents and particulates.



Why is hydrogen quality important?

- Impurities negatively affect fuel cell performance
- PM can cause valve and seal malfunction
- Poor quality can cause inadequate vehicle operation

Hydrogen quality standards will protect the consumer!

The effect of standards

- Lax standards inhibit FCS cost and durability
 - DOE 2015 targets:
 - \$30/kW for 60% peak-efficient, durable, direct hydrogen fuel cell power system for transportation
 - 5,000 hours fuel cell lifetime
- Stringent standards raise the price of fuel
 DOE 2015 target: \$2-3 gge for hydrogen

H2 quality standards development

- SAE and ISO set fuel quality standards
 - SAE TIR J2719 Hydrogen Quality Guideline for fuel cell vehicles
- ASTM sets testing standards
 - ASTM International Committee D03.14
- DMS enforces fuel delivery standards in California

Why is CaFCP involved?

- Real-world data of testing, sampling, and analysis
- Liaison between SDOs and CaFCP members
- Facilitates cooperation among industry segments and among SDOs
 - DMS activities

California's H2 quality regulation

- SB76 requires CA to adopt a standard by 1/1/08
 Stakeholders believe its too soon for a standard
- Meetings at CaFCP to explore issue and options
 Shortened the process
- DMS moved forward with an interim standard
 - Complies with the regulation
 - Avoided setting a permanent standard too soon

Proposed DMS interim standard

Specification	Value
Hydrogen Fuel Index (minimum, %) (1)	99.97
Total Gases (maximum, ppm v/v) (2)	300
Water (maximum, ppm v/v)	5
Total Hydrocarbons (maximum, ppm v/v) (3)	2
Oxygen (maximum, ppm v/v)	5
Helium (maximum, ppm v/v)	300
Nitrogen and Argon (maximum, ppm v/v)	100
Carbon dioxide (maximum, ppm v/v)	2
Carbon monoxide (maximum, ppm v/v)	0.2
Total Sulfur Compounds (maximum, ppm v/v)	0.004
Formaldehyde (maximum, ppm v/v)	0.01
Formic acid (maximum, ppm v/v)	0.2
Ammonia (maximum, ppm v/v)	0.1
Total Halogenated Compounds (maximum, ppm v/v)	0.05
Particulates Size (maximum, µm)	10
Particulate Concentration (maximum, µg/L @ NTP)	1
1. The hydrogen fuel index is the value obtained with the (%) subtracted from 100%	value of total gase

2. Total Gases = Sum of all impurities listed on the table except particulates 3. Total Hydrocarbons may exceed 2 ppm v/v only due to the presence of methane, provided that the total gases do not exceed 300 ppm v/v.

- SAE and DMS coordination

 SAE TIR
 J2719
- CaFCP member input on regulatory language

Testing to the standard

- ASTM standardize test methods for sampling and analyzing hydrogen fuel quality
- How precise can you measure?
 - Can a standard call for an amount that is below what equipment can test?
- Test methods must be reproducible
- CaFCP provides real world data

HQSA

Hydrogen quality sampling adapter collects H2 samples from the station nozzle

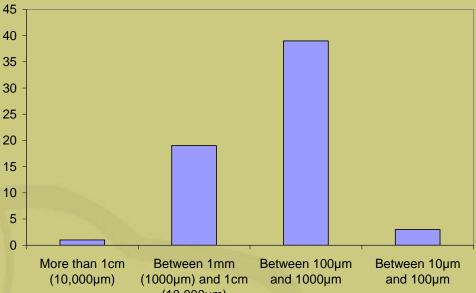
HQSA results

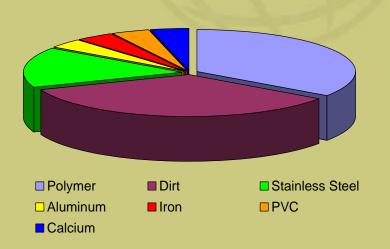
Observations from aggregated results of 5 station tests:

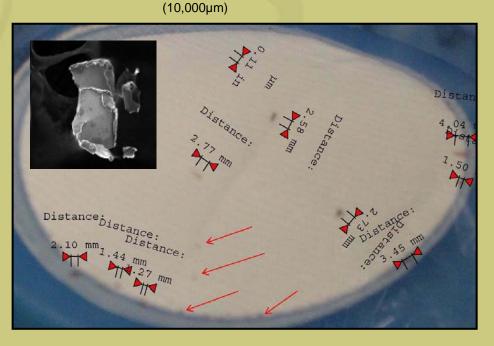
- 1. Detectable limits change
- 2. Outliers from majority results
- 3. Large particulates

Note: all units in µmol/mol unless indicated otherwise

	SAE TIR J2719	Previous Smart Chemistry	Updated Smart Chemistry	Concentration	
Constituent	Limits	Detection Limits	Detection Limits	Outliers	
Water	5	1	1	< DL (2.2)	
Total Hydrocarbons					
(C1 Basis)					
Methane Ethane, Ethene, Ethyne		itrogen	= 762	< DL	
Other Hydrocarbons		100 (0		< DL (0.14)	
Oxygen	t V	vs. 100 (S	SAE)		
Helium, Nitrogen,		· · · · · · · · · · · · · · · · · · ·		22	
Argon	100				
Helium		10	10	< DL (78)	
Nitrogen		5	5	$< DL (762)^{1}$	
Argon		0.8	0.8	< DL	
Carbon Dioxide	1	0.4	0.4	< DL (1,2)	
Carbon Monoxide	0.2	0.1	0.1	< DL	
Total Sulfur	0.004				
Hydrogen Sulfide		0.001	0.0005	< DL	
Carbonyl Sulfide		0.001	0.0005	^{(*} DL (0.0018) <u>0.0046</u>)	
Methyl Mercaptan		0.001	0.0005	< DL	
Carbon Disulfide		0.001	0.0005	DL	
Formaldehyde	0.01	0.004	0.002	< DГ	
Formic Acid	0.2	0.06	0.02	< DГ	
Ammonia	0.1	0.04	0.04	< DГ	
Total halogenates	0.05				
Chlorine		0.05	0.05	< DL	
Hydrogen Chloride		10	0.05	< D L	
Hydrogen Bromide		10	0.05	< D L	
Organic Halides			0.02	< DT	
Particulate Size	$< 10 \mu m$	10 to	$1 \mu m$		
	Number of P		ore than 1 cm		
	r of Particula		nm and 1 cm		
	er of Particu		and 1000 µm	$\frac{39}{3}$	
Number of Particulate with size within 10 μ m and 100 μ m 3^3					
Particulate	1 /Т		0.000	0.0025 - 0.019	
Concentration	1µg/L	Balance	0.002	μg/L	
¹ Underlined numbers indic	ate outlier			rmended	
limits. ² Underlined numbers in the "Part Part Athe SAE					
recommended sizes.					
³ The three smallest particulates for during sampling the smaller particulates					
during sampning die smaner particula					






HQSA results (Cont'd)₄₅

- Particulates varied in size and composition
- Particulate sizes exceeded SAE limits

Common particulate sizes

Test conclusions

- Samples came from five stations
 - Mix of liquid delivery, electrolysis and SMR
 - No conclusions related to production/delivery from tests
- Research will continue, especially in particulate sizes
- Real-world field testing will continue
 - More tests planned this year

Standards development continues

- Developing standards for fuel quality is necessary
- Developing standards isn't fast and easy
- Providing real-world data is vital
- CaFCP will continue to play a role

Collaboration is the key