

Concurrent Technologies Corporation

Pennsylvania Indigenous Energy Hydrogen Delivery Tradeoff Study

NHA 2008

Sacramento, CA

March 31, 2008

Hydrogen Regional Infrastructure Program in Pennsylvania

Eileen M. Schmura and Sarah Largent Concurrent Technologies Corporation Paul L. Lemar, Resource Dynamics Corporation

Presentation Outline

- Phase I Results
- Phase II Work
 - PA Indigenous Energy Resources
 - Hydrogen Production Options
 - Hydrogen Delivered Price

Phase I Hydrogen Tradeoff Study

• Objectives

- Quantify tradeoffs between alternative hydrogen production and delivery approaches using DOE's H2A model and other analytical methods
- Investigate commercial and near commercial options
- Use Pennsylvania as a case study

• Tradeoff Study Parameters

- Assess demand at 1%, 10%, and 30% of light duty vehicle miles
- Lowest delivered hydrogen cost based on life cycle cost analysis
- State level feedstock costs

Key Tradeoffs Analyzed

• Plant Size

- Large central plants- better production economics but more intensive distribution costs
- Regional central plants- lower distribution costs
- On-site distributive production- eliminates distribution

• Feedstock and Technology Options

- Natural gas versus coal, biomass, electricity or other feedstocks
- State level feed stock pricing (Natural Gas: \$8.00-\$10.00/MMBTU and Coal: \$41/ton)
- Capital investment as well as operating costs

• Delivery Methods

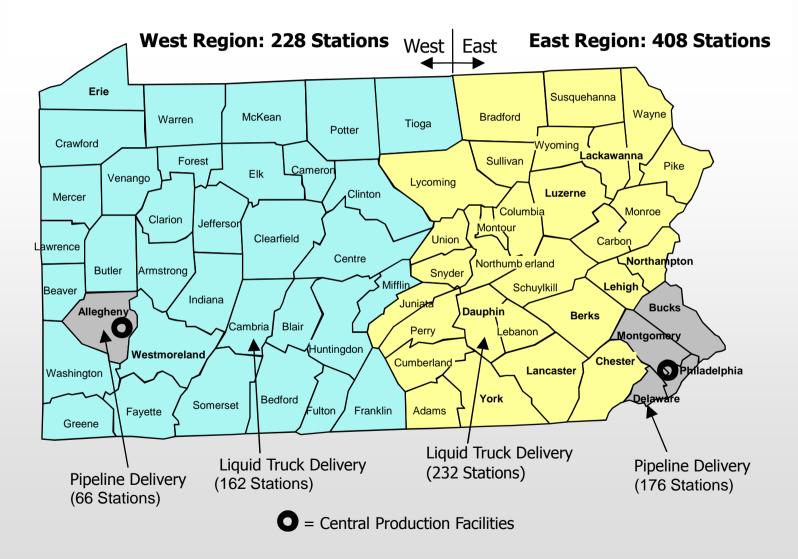
 Compressed truck transport, liquid truck transport, and pipeline delivery were pitted against on-site production

Phase I Key Feedstock Inputs for Analysis

Feedstocks, for Central Station	PA Prices	Source	Units
Electricity	0.0598	EIA PA Industrial	\$/kWh
Electricity Central	010000		\$/kWh,
Plant Electrolysis	0.0295	PJM 2004 average	wholesale price
Natural Gas	7.82	EIA PA city gate	\$/MMBtu HHV
Biomass	45.0	ORNL PA average	\$/bone dry ton, 8,000 Btu/lb HHV
Coal	41.18	EIA PA Utility	\$/tonne, 12,000 Btu/lb HHV
Diesel	2.20	Bloomberg	\$/gal
Feedstocks, for Distributed			
Production	PA Prices	Source	Units
Electricity	0.0836	EIA PA Commercial	\$/kWh
Natural Gas	9.82	EIA PA city gate+\$2 for distribution cost	\$/MMBtu HHV
Gasoline	1.46	Bloomberg US Wholesale	\$/gal
Methanol	0.95	Methanex US	\$/gal

Note: EIA=Energy Information Administration, PJM=PJM Interconnection, ORNL=Oak Ridge National Laboratory.

Impact of Hydrogen Demand on Feedstock Availability


	Annual	Units	Feedstock Production/ Consumption	Units	30% LDV Penetration Feedstock Requirement	Current Share of Feedstock
Natural Gas						
(Production)	159,800	Million cuft/yr	446,600	MMBtu/day	360,800	81%
Natural Gas (Consumption)	651,600	Million cuft/yr	1,820,900	MMBtu/day	360,800	20%
Coal		1000 Short				
(Production)	63,700	tons/yr	4,188,500	MMBtu/day	464,000	11%
Electricity (Production)	206,300	GWh/yr	1,928,500	MMBtu/day	412,800	21%
Biomass, Woody		1000 dry				
(Available)	7,430			MMBtu/day	494,500	152%

Note: Each feedstock evaluated independently.

Source: Feedstock data from EIA (2003), except biomass from Oak Ridge National Laboratory (1999).

Assumptions: Hydrogen production efficiencies from H2A case studies and SFA Pacific (2002) (pipeline transport). Hydrogen demand for electricity includes electrolysis and compression, and for biomass includes feedstock use for drying feedstock input to gasifier.

Two Plant Option, Demand Centers 30 Percent Demand Scenario

Phase I Summary of Lowest Delivered Costs for Both Carbon Cases

		1% LDV P	enetration	10% LDV P	enetration	30% LDV	Penetration	
		East	West	East	East West		West	
	Plant Size (kg/day)	74,000	18,000	428,000	224,000	1,283,000	718,000	
	Lowest Delivered Cost (\$/kg)	\$4.08	\$4.08	\$3.64	\$4.05	\$3.28	\$3.48	
O CAR	Production and Delivery Method	Distributed NG	Distributed NG	Central Station Coal Gasification; Pipeline/Liquid	Central Station Coal Gasification; Pipeline/Liquid	Central Station Coal Gasification; Pipeline/Liquid	Central Station Coal Gasification; Pipeline/Liquid	
CARBON	Lowest Delivered Cost (\$/kg)	\$4.08	\$4.08	\$3.90	\$4.08	\$3.54	\$3.74	
LOW CAF	Production and Delivery Method	Distributed NG	Distributed NG	Central Station Coal Gasification w Seq; Pipeline/Liquid	Distributed NG	Central Station Coal Gasification w Seq; Pipeline/Liquid	Central Station Coal Gasification w Seq; Pipeline/Liquid	

KEY:

= Central Station Production, Pipeline/Liquid Delivery (Pipeline for Philadelphia and Pittsburgh, Liquid Truck for remaining areas)

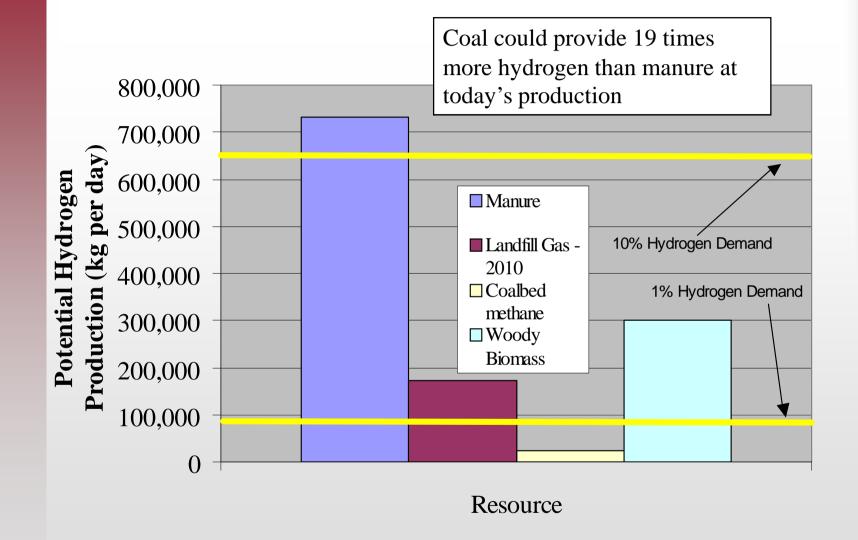
= Distributed Natural Gas Production On-Site via Reformation (no Delivery Necessary)

Phase II Hydrogen Tradeoff Study

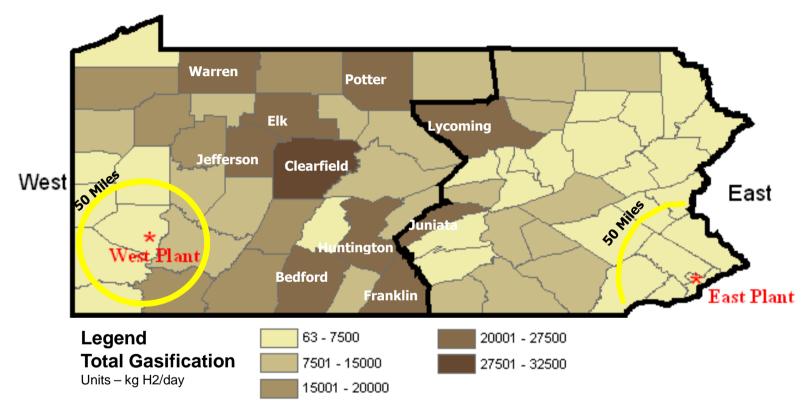
Objectives

- Quantify tradeoffs between alternative hydrogen production and delivery approaches using DOE's H2A model and other analytic methods
- Investigate commercial and near commercial options
- Use Pennsylvania as a case study (I-95 Corridor is a focus of a companion effort)

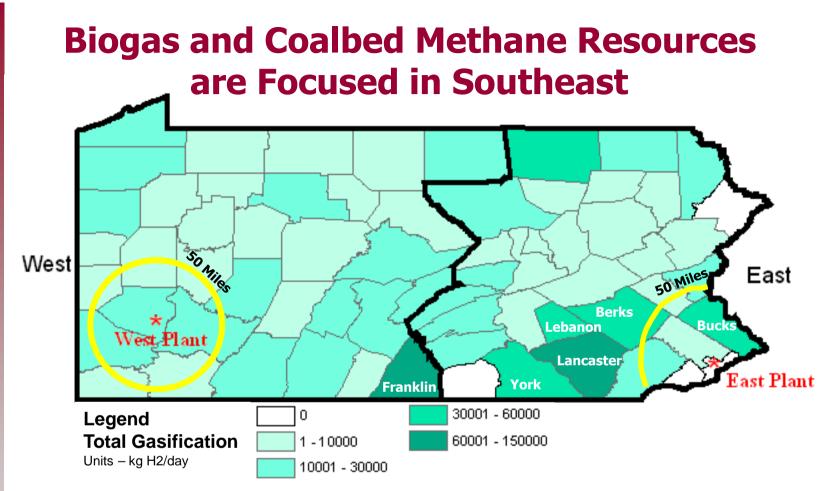
Tradeoff Study Parameters


- Assess demand at 1%, 10%, and 30% of light duty vehicle miles
- Analyze lowest delivered hydrogen cost based on life cycle cost
- Use location-specific (county basis) PA resources as a feedstock for hydrogen
- Key Tradeoffs Analyzed
 - Feedstocks (coal, coalbed methane, manure, woody biomass)
 - Plant size (distributed vs. central station)
 - Delivery (truck, pipeline, etc.)

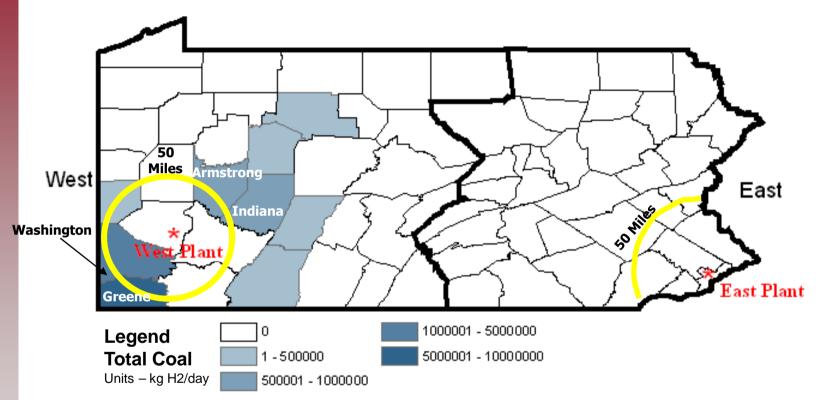
Pennsylvania's Natural Resources for Potential Hydrogen Production


- Coal
- Coalbed Methane
- Natural Gas
- Electricity
 - Nuclear
 - Renewables
 - Wind
 - Biodiesel
 - Ethanol
- Agricultural Resources
 - Livestock manure
 - Herbaceous biomass

- Forestry & Wood Resources
 - Logging & primary mill residues
 - Secondary mill residues
- Miscellaneous Resources
 - Municipal solid waste (landfill gas)
 - Restaurant-derived waste grease
 - Residual paper waste
- Biomass


Pennsylvania's Hydrogen Resources

Woody Biomass Concentrated in Center of State Away From Demand Centers



- Top 10 counties comprise 37 % of resources
- Top counties are over 100 mi from East/West hydrogen plant locations (50 mile radius important for biomass power generation)
- Resources based on current production of primary and secondary wood wastes, no harvesting of growing stock
- Entire State can provide 10% of hydrogen demand at \$46-\$55/ton delivered

- Top 2 counties comprise 22% of resources
- Resources based on
 - digestion of swine and dairy manure (77%)
 - landfill gas production (21%)
 - coal bed methane (2%)
 - no food processing waste or other manure used
- New term: "Green" Natural Gas
- Entire State can provide 15% hydrogen demand, using dedicated pipeline or existing natural gas distribution to deliver biogas

Ample Coal for Entire State Hydrogen Demand

- Production of underground bituminous = 2 times the hydrogen needed at 100%, does not count surface mining, other coal or reserves
- Greene county provides two-thirds of current production, and is 50 mi from West plant, though coal can be transported 100s of miles
- East Plant remote from major coal reserves, although anthracite mines are closer
- Cost of coal \$65-\$78/ton delivered

Phase II: Key Feedstock Inputs for Distributed Production Analysis

Feedstocks For Distributed Production	Price	Source	Units	Units (\$/MMBTU)
Electricity	0.09	EIA PA commercial (2006) \$/kWh 2		26.38
Natural Gas	12.3	EIA PA Industrial (2006 Annual)	\$/MMBTU (1500 kg/day Scenario)	12.3
Natural Gas	14.3	EIA PA commercial (2006 Annual)	\$/MMBTU (100 kg/day Scenario)	14.3
Gasoline	3.08	EIA PA (November 2007)	\$/gal	22.21
Biodiesel	3.86	US Rack Prices	\$/gal	25.67
Ethanol	2.45	US Rack Prices	\$/gal	17.67
Methanol	1.42	Methanex US	\$/gal	10.24
Coalbed Methane	14.3	(being sold as NG)	\$/MMBTU	14.3

Note: EIA=Energy Information Administration, PJM=PJM Interconnection, ORNL=Oak Ridge National Laboratory

Phase II: Key Feedstock Inputs for Central Station Production Analysis

Feedstocks For Central Production	PA Prices	Source	Units	Units (\$/MMBTU)
Electricity	0.06	EIA PA Industrial (2006)	\$/kWh	17.58
Electricity Central Plant Electrolysis	0.03	PJM Interconnection, off-peak (2006)	\$/kWh, wholesale price	8.79
Natural Gas	10.3	EIA PA City Gate (2006)	\$/MMBTU	10.3
Biomass	46-55	Penn State University Forest Resources	\$/dry ton delivered	2.67-3.21
Biomass	45	ORNL PA average	\$/bone dry ton, 8000 btu/lb higher heating value bone dry 50% moist, 41 mile haul	2.62
Coal	43-52	Leonardo Technologies Inc.	\$/ton delivered (June 2007)	2.08-2.51
Coal	64-78	Leonardo Technologies Inc.	\$/ton delivered (February 2008)	3.13-3.77
Diesel	3.4	EIA PA (November 2007)	\$/gal	24.52
Landfill Gas			\$/MMBTU, with gas cleanup with and 10 miles pipeline added	5.67
ADG	ADG 4.64-7.08 Lehman Ag Service		<pre>\$/MMBTU based on gas cleanup and \$0.20/mile manure delivery charge</pre>	4.64-7.08

Note: EIA=Energy Information Administration, PJM=PJM Interconnection, ORNL=Oak Ridge National Laboratory

Phase II COAL & BIOMASS

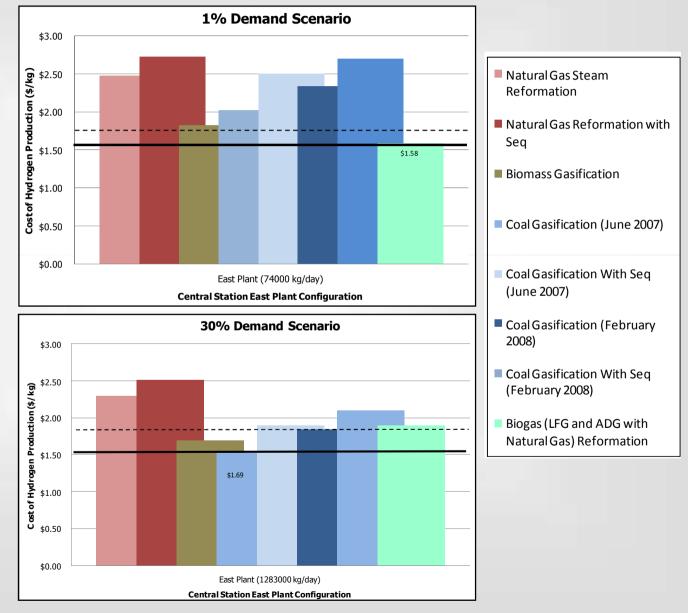
Coal (June 2007)

Regions	Total Tons Available	Average Distance (Miles)	Transportation Costs (\$)	Total cost of coal Delivered (\$/short ton delivered)
West	37,704,447	91	2.72	42.97
East	East 0		11.61	51.86
Southwest	Southwest 37,704,447		2.72	42.97
Southeast	0	387	11.61	51.86
South-central	0	208	6.24	46.49
Northeast	Northeast 0		8.31	48.56
Northwest	Northwest 0		3.81	44.06

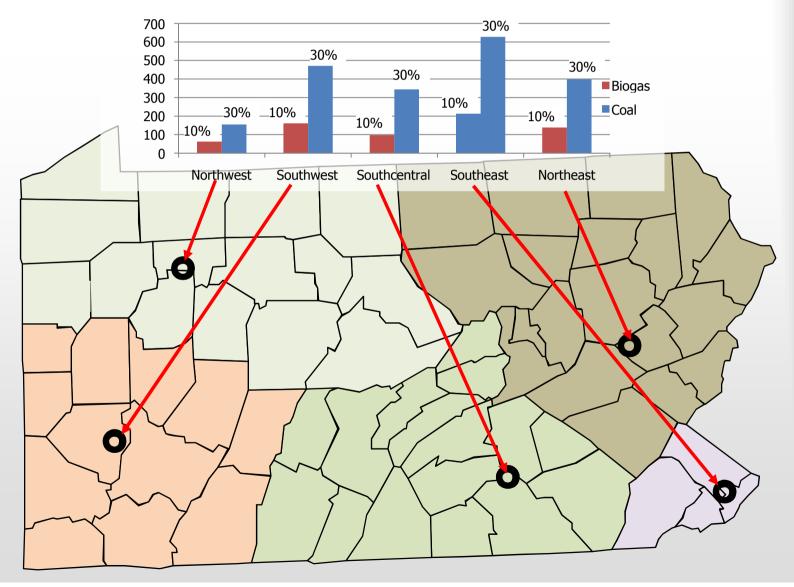
Biomass

Region	Total Tons Available			Total Cost of Biomass Delivered (\$/dry ton)
Southeast	1,895,385	30	6.00	46.00
Southcentral	63,610,314	71.45	14.29	54.29
Southwest	35,098,901	52.2	10.44	50.44
Northwest	79,144,153	61.65	12.33	52.33
Northeast	37,342,775	76.45	15.29	55.29

Impact of Location on Delivered Hydrogen Cost


Coal Pricing Compo		verage Price se I)	Regional Pricing (Phase II)		
	East Plant	West Plant	East Plant	West Plant	
Delivered Coal Price (\$/Ton)	37.5	37.5	77.79	64.46	
Hydrogen Production Cost (\$/kg)	1.41	1.41	2.10	1.97	
Hydrogen Delivery Cost (\$/kg)	1.87	2.07	1.87	2.07	
Delivered Hydrogen Cost (\$/kg)	3.28	3.48	3.97	4.04	

Note: hydrogen production and delivery costs for 30 percent demand scenario


Screening Tool

Feedstock	Feedstock Price (\$/MMBTU)	Estimated Hydrogen Production Cost (\$/kg)	Maximum Cost (\$/kg)	Screening Analysis Result
Electricity	19.05	5.04	2.50	Fail
Electricity incorporating off peak hours	8.79	4.08	2.50	Fail
Natural Gas	10.3	2.30	2.50	Pass
Biomass	3.46	1.73	2.50	Pass
Coal (June 2008)	1.97	1.48	2.50	Pass
Coal (February 2008)	2.95	1.70	2.50	Pass
ADG	4.64	1.25	2.50	Pass
LFG	5.91	1.48	2.50	Pass
Wind	19.05	7.96	2.50	Fail
Wind incorporating off peak hours	8.79	6.71	2.50	Fail
Biodiesel	15.00	7.12	2.50	Fail
Ethanol	31.18	6.61	2.50	Fail
Gasoline	23.69	5.96	2.50	Fail
Methanol	21.98	5.88	2.50	Fail
Natural Gas w/ Carbon Seq	10.3	\$2.49	2.50	Pass
Coal (June 2008) w/ Carbon Seq	1.97	\$1.73	2.50	Pass
Coal (February 2008) w/ Carbon Seq	2.95	\$1.93	2.50	Pass

Central Station East Plant Configuration

Two Plant Option, Demand Centers 30 Percent Demand Scenario

Summary Delivered Hydrogen, Two Central Plant Option

		1%	LDV	10% LI	V	30% LDV		
		East Plant West Plant		East Plant	West Plant	East Plant	West Plant	
	Plant Size (kg/day)	74000	19000	428000	239000	1283000	718000	
KBON NTION	Lowest Delivered Cost (\$/kg)	4.28	4.61	3.64	4.13	3.4	3.57	
NO CARBON REGULATION	Production and Delivery Method	Central Station Biogas (LFG and ADG); Pipeline Distribution	Distributed Natural Gas	Central Station Biogas (LFG and ADG); Pipeline Distribution	Central Station Coal Gasification; Pipeline/Liquid Distribution			
LOW CARBON	Lowest Delivered Cost (\$/kg)	4.28	4.61	3.64	4.48	3.77	3.88	
LOW C	Production and Delivery Method	Central Station Biogas (LFG and ADG); Pipeline Distribution	Distributed Natural Gas	Central Station Biogas (LFG and ADG); Pipeline Distribution	Central Station Coal Gasification w Seq Pipeline/Liquid Distribution			

Summary Delivered Hydrogen, Five Regional Plant Option

				10% LDV	1		30% LDV				
		Southeast Plant	Southwest Plant	Northeast Plant	Southcentral Plant	Northwest Plant	Southeast Plant	Southwest Plant	Northeast Plant	South central Plant	North west Plant
	Plant Size (kg/day)	211000	161000	138000	97000	62000	627000	471000	398000	344000	155000
zZ	Lowest Delivered Cost (\$/kg)	3.60	4.27	4.61	4.33	4.61	3.21	3.64	3.78	3.76	4.31
NO CARBON REGULATION	Production and Delivery Method	Central Station Coal Gasification; Pipeline/ Liquid Distribution	Central Station Biogas (LFG and ADG); Pipeline Distribution	Distributed Natural Gas	Central Station Biogas (LFG and ADG); Pipeline Distribution	Distributed Natural Gas	Central Sta	ition Coal Gasif	ication; Pipe	line/Liquid	Distribution
z	Lowest Delivered Cost (\$/kg)	3.95	4.27	4.61	4.33	4.61	3.58	3.95	4.10	4.08	4.61
LOW CARBON	Production and Delivery Method	Central Station Coal Gasification w/ Seq; Pipeline/ Liquid Distribution	Central Station Biogas (LFG and ADG); Pipeline Distribution	Distributed Natural Gas	Central Station Biogas (LFG and ADG); Pipeline Distribution	Distributed Natural Gas	Central Station Coal Gasification w/ Seq; Pipeline/Liquid Distribution		Distributed Natural Gas		

KEY

Central Station Biogas (LFG and ADG) Production, Pipeline Distribution

Distributed Natural Gas Production On-Site via Reformation (no Delivery Necessary)

Central Station Coal Production, Pipeline/Liquid Delivery (Pipeline for Philadelphia and Pittsburgh, Liquid Truck for remaining areas)

Note: The Data for Central Station Coal Gasification with and without Sequestration is based on June 2007 Coal Prices.

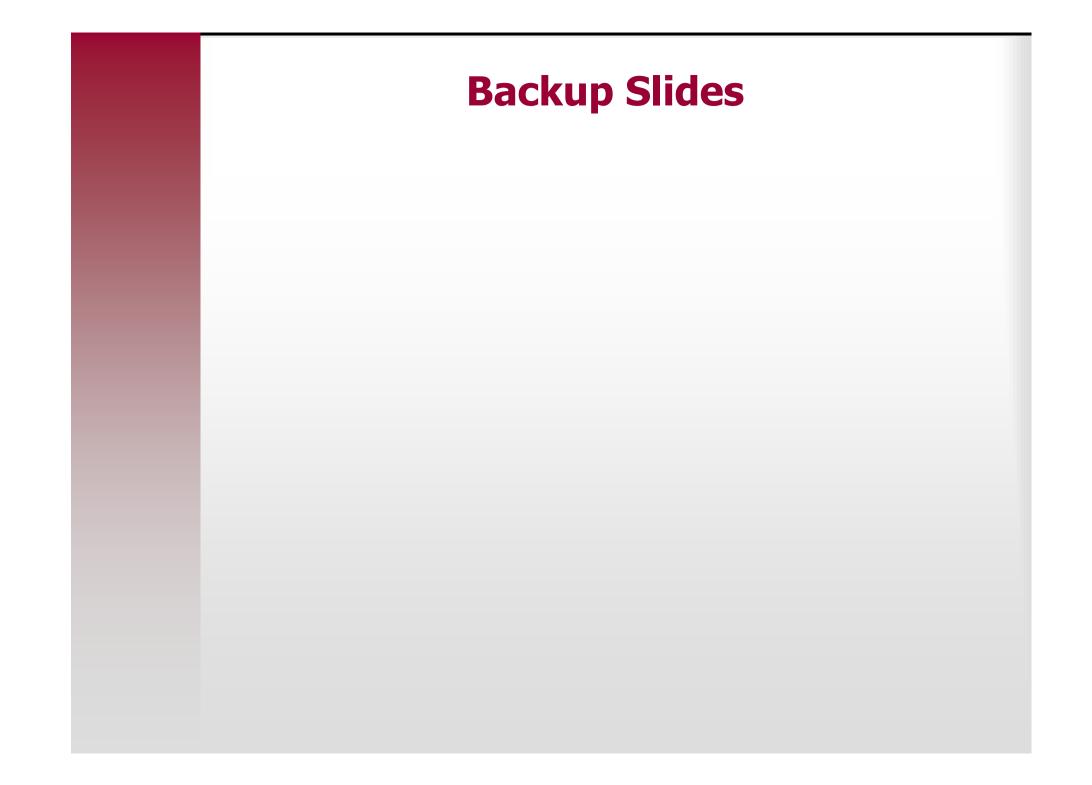
Conclusions

- Indigenous resource do influence the most economical source of hydrogen
 - Central Station emerges earlier in the initial demand scenario
 - Still important in 10% demand option
 - 30 % demand option coal with sequestration is most economical
- Global Energy markets will affect economic choices
- Regional planning may be most prudent along the I95 corridor, not just a state issue

Concurrent Technologies Corporation

Contact Information and Acknowledgements

Concurrent Technologies Corporation Eileen Schmura schmurae@ctc.com (412) 992-5367


Sarah Largent largents@ctc.com (937)306-3303 Resource Dynamics Paul Lemar Jr., President pll@rdcnet.com 703-356-1300 ext. 204

- U. S. Department of Energy
 - Monterey Gardiner
 - Pete Devlin
 - Paul Bakke
- Air Products and Chemical Inc.
- PA DEP
- Penn State University

Acknowledgement/Disclaimer

This material is based on work supported by the Department of Energy under Award Number DE-FC36-04GO14229. This report was prepared as an account of work sponsored by an agency of the United Sates Government.

