Composite Pd and Pd/alloy Porous Stainless Steel Membranes for Hydrogen Production, Process Intensification and CO₂ Sequestration

Yi Hua Ma*, Nikolaos K. Kazantzis, M. Engin Ayturk, Natalie Pomerantz and Chao Huang-Chen *yhma@wpi.edu Center for Inorganic Membrane Studies Department of Chemical Engineering Worcester Polytechnic Institute Worcester, MA 01609

2008 National Hydrogen Association Annual Conference Sacramento Convention Center, Sacramento, California March 30 – April 3, 2008

OUTLINE

- Objectives
- Membrane Synthesis
- Membrane Performance Evaluation
- Effects of Contaminant (H₂S) on Membrane Performance
- Mathematical Modeling for Process
 Intensification
- Conclusions and Challenges

OBJECTIVES

- Synthesis of composite Pd and Pd/alloy membranes with long term durability
- Membranes with resistant to contaminants (H₂S)
- Long term tests to demonstrate the durability
- Mathematical modeling for process
 intensification

MEMBRANE SYNTHESIS

- Formation of Intermetallic diffusion barrier layers In situ controlled oxidation (US Pat. 6,152,987) Bi-metal multi-layer (BMML) electroless deposition (US Pat. 7,175,694)
 - Initiation of the porous structure by EP of Ag first followed by Pd Formation of a porous layer by alternating EP of Ag and Pd
- Formation of Pd membrane by electroless plating
- Formation of Pd/Cu membrane by sequential electroless plating followed by annealing
- Formation of Pd/Au membrane by electroless plating of Pd followed by galvanic displacement followed by annealing

TYPICAL PLATING SOLUTIONS COMPOSITION FOR Pd/Ag-PSS COMPOSITE

Pd Plating Solution
 Ag Plating Solution

(Pd(NH₃)₄Cl_{2*}H₂0 Na₂EDTA NH₄OH (28%)

4.0 g/l 40.1 g/l 198 ml/l

AgNO₃ Na₂EDTA NH₄OH (28%)

0.519 g/l 40.1 g/l 198 ml/l

Reducing agent (H₂NNH₂)

Adjustable

Reducing agent (H₂NNH₂)

Constant (5.6 ml/l)

5

Pd deposition procedure by the electroless plating technique

(US Patent 6152987, issue date November 28, 2000

NECESSARY INGREDIENT IN AN ELECTROLESS PLATING SOLUTION

- Reducing Agent
 Hydrazine
- Stabilizing Agent
 EDTA (Ethylene diamine tetraacetic acid) Salt
- Plating Agent Palladium Tetramine Chloride [Pd(NH₃)₄Cl₂•H₂O]

 $2Pd^{2+} + H_2NNH_2 + 4OH^- = 2Pd^0 + N_2 + 4H_2O$

ELECTROLESS Pd-PLATING BATH

Pd(NH ₃)Cl ₂ •H ₂ O, g/l	4.0
NH ₄ OH (28%),ml/l	198
Na ₂ EDTA, g/l	40.1
H ₂ NNH ₂ (1 M), ml/l	5.6 - 7.6
pH	~10.4
TEMPERATURE, ⁰C	60
V _{SOLUTION} /S _{PLATING AREA} , cm ³ /cm ²	~3.5 6

APPEARANCE OF THE MEMBRANES

Thickness:17.5μm Au content: 2.5~5 wt%

Thickness:16.4µm Au content: 5~7.5 wt%

C03

ACTIVATION ENERGY OF PERMEATION (H₂ PERMEANCE VALUES IN PARENTHESES)

PERFORMANCE SUMMARY OF C03

Т (°С)	H ₂ flux (m³/m²*h)	He flux sccm	H ₂ /He Selectivity	H ₂ permeance (m ³ /m ² *h*atm)	H ₂ (film) permeance (m ³ /m ² *h*atm)	H ₂ (pure Pd) permeance (m ³ /m ² *h*atm)	
250	5.6	0.42	546	13.1	, 14.3	9.9	
300	8.7	0.45	801	20.8	23.1	13.6	
350	10.6	0.4 50 % higher H ₂ permeance, and 0.6 lower Ea		28.9	17.7		
400	12.8			e, and	34.5	22.1	
Ea (kJ/mole)			12.7	12.9	15.6		

POISONING/RECOVERY CYCLE AT 500°C

N_03 and C_04 were exposed to the H_2S/H_2 mixture for 2 and 4 hour intervals, 14 respectively, at each temperature.

Recovery time

Recovery time was defined as the time at which the H_2 permeance ceased to increase.

SURFACE MORPHOLOGY OF Pd/Au ALLOYS WITH ~10WT% Au AFTER H₂S POISONING FOR 24 HOURS (B=BEFORE, A=AFTER, MAGNIFICATION: 3KX) 450°C 400°C 500°C

350°C

S: 0.09 wt%

S: 0.09 wt%

S: 0.04 wt%

Worcester Polytechnic Institute

MODEL VALIDATION: LITERATURE BENCHMARKING

- Xu & Froment, `89
- Matzakos et al., `04
- Assaf et al., `98
- Shu et al., `94
- Oertel et al., `87
- Hoang et al., `05
- Hou & Hughes, `01
- Oklany et al., `98
- Jorgensen et al., `95

19

FUEL PROCESSOR FOR H₂ PRODUCTION

- **Prolonged materials & catalyst** lacksquarelifetime
- High pressure CO₂ with good purity for sequestration

Worcester Polytechnic Institute

ullet

•

Higher X_{CH4} could be maintained even at noticeably high GHSV values.

Worcester Polytechnic Institute

Maximum performance is achieved via the Membrane reactor (MR) at lower temperatures and high pressures.

Worcester Polytechnic Institute

CONCLUSIONS AND CHALLENGES

Conclusions

- H₂S exposure caused flux decrease for both Pd/Au and Pd/Cu membranes
- Lower reduction in fluxes at higher temperatures
- Flux recovery possible at higher temperatures
- Maximum benefits achieved at low temperature and high pressure from modeling and process intensification computation

Challenges

- Homogenization of Pd-rich alloys at lower temperatures
- Development of other alloys for sulfur resistant membranes
- Development of catalysts with good reforming activity at lower temperatures

23

ACKNOWLEDGEMENT

Disclaimer: This report was prepared as an account of work supported by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific otherwise does not necessarily constitute or imply its endorsement, recommendation, or opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

US DOE University Coal Research (UCR) Program DE-FG26-04NT42194

Project Officer: Dr. Arun Bose, NETL

Oak Ridge National Laboratory, Oak Ridge, TN

Shell International Exploration and Production, Inc., Shell Hydrogen

 US DOE Central Hydrogen Production Pathway Program, DE-FC26-07NT43058

Project Officer: Dr. Daniel Driscoll, NETL

24