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1. Introduction

As part of the U.S. Department of Energy’s Hydrogen, Fuel Cells & Infrastructure Technologies Program, Sandia National Laboratories is developing the technical basis for assessing the safety of hydrogen-based systems for use in the development/modification of relevant codes and standards.  Sandia is developing benchmark experiments and a defensible analysis strategy for risk and consequence assessment of unintended releases from hydrogen systems. This work includes the performance of Quantitative Risk Assessments (QRA) of hydrogen facilities.   The QRAs are used to identify and quantify scenarios for the accidental release of hydrogen and identify the significant risk contributors at different types of hydrogen facilities.  The results of the QRAs are envisioned as one input into a risk-informed codes and standards development process that identifies a minimum set of requirements needed to establish an acceptable level of risk.
Key inputs into a QRA are the data required to quantify the frequency of potential accident scenarios that involve the release of hydrogen and subsequent ignition.  The data required includes initiating event frequencies (e.g., the frequency of leaks from different components), mitigating component failure probabilities (e.g., hydrogen detectors), the probability of human errors that may lead to or exacerbate a hydrogen release, and the probability of important phenomenological events such as the potential for auto-ignition of a hydrogen jet.  Unfortunately, data specific to hydrogen facilities has not been widely available; thus, other sources of data have been utilized in the QRAs of hydrogen facilities.  

This paper describes one effort to establish the component leak frequencies needed for the performance of QRAs of hydrogen facilities.  Generic data sources, including those specific to compressed gas, were surveyed and a range of values were obtained for the required parameters.  Bayesian statistical methods have been utilized to merge the data from these different sources.  In addition, limited hydrogen-specific information was obtained from the literature and from industry sources.  Two different methods were used to generate parameter values from this hydrogen-specific data.  In the first method, classical statistical approaches were used to estimate parameter values utilizing only the hydrogen-specific data.  In the second approach, Bayesian methods were utilized to merge the generic and hydrogen-specific information to obtain distributions of parameter values.  As more hydrogen data become available, these parameter estimates can be updated and will eventually reflect hydrogen-specific failure probabilities.  The resulting values will not only support the QRAs of hydrogen facilities but will also identify the components that are the major contributors to facility outages.
2.  Data Requirements

In order to begin quantifying the overall risk associated with a hydrogen facility, it is necessary to establish the types of accidents that can occur.  Potential contributors to hydrogen accidents include the occurrence of leakage from the components comprising a hydrogen system.  Leakage events can result in jet fires, flash fires, or explosions depending upon whether the hydrogen is auto-ignited or is ignited by an external source.  The resulting accident frequency and consequences are a function of the leak size and system pressure.  To model these accidents in a QRA, it is desirable to establish component leak frequencies as a function of leak size and system pressure.  

Unfortunately, there is little available data on hydrogen-specific component leakage events that can be utilized in a QRA.  Although major events are recorded in databases such as the DOE Hydrogen Incident Reporting database [1] for lessons learned, the failure to record all events (e.g., small leakage events) and the number of operating hours represented in the database makes utilization of such databases for data analysis difficult.  Thus to date, most QRAs for hydrogen facilities have utilized published values from other non-hydrogen sources.  In general, the process for selecting failure frequencies has involved a review of data sources and a selection of values that are felt to be most representative of hydrogen components.  For example, the European Industrial Gas Association (EIGA) provides recommended leak rates in Reference 2 for various components including pipes, valves, joints and unions, hoses, and flanges.  The recommend values were chosen after a review of leak frequencies presented in five different sources (none of which are hydrogen data) and then used for the hydrogen facility assessment documented in Reference 2.  
Rather than selecting a value from different generic sources, a different approach is addressed in the assessment documented in this paper.  Data from different sources were collected and combined using both traditional and Bayesian statistics [3].  A statistical approach has three major advantages over the approach utilized by EIGA and other QRA guidance documents.  First, it allows for the generation of leakage rates for different leak sizes.  Second, the Bayesian approach generates uncertainty distributions for the leakage rates that can be propagated through the QRA models to establish the uncertainty in the risk results.  Finally, the Bayesian approach also provides a means for incorporating limited hydrogen-specific leakage data to establish estimates for leakage rates for hydrogen components.  

3.  Data Analysis Methods

There are two general approaches to analyzing data:  traditional statistical methods and Bayesian statistics [3].  In some cases, Bayesian techniques are superior to traditional statistical techniques.  In other cases (e.g., when large amounts of data are available), the benefits of Bayesian techniques are minimal at best. 

In cases where large amounts of data are available, traditional methods are usually preferred.  A typical traditional statistical analysis would involve calculating a maximum likelihood estimate (MLE) and a central 90% confidence interval.  For an observation period of ‘t’ with ‘x’ events (in our case, “events” would be synonymous with “leaks”), the following equations would be used to calculate these values.
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 is the rth percentile of the Chi-square distribution with A degrees of freedom.
Note that the lower bound of the interval is not defined if x = 0.  In this case, the MLE is zero and the lower bound of the confidence interval is also set to zero [4].
In some cases, only small amounts of data can be found that are relevant to the problem at hand.  In these cases, Bayesian techniques have proven to be superior to traditional analyses.  Bayesian analysis utilizes Bayes’ theorem which is illustrated in Equation 1.
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 for X; can also be stated as “prior to obtaining the evidence” – probability that the value of 
[image: image10.wmf]q

 is equal to
[image: image11.wmf]i

q

.

· 
[image: image12.wmf](

)

e

P

 - The total probability that the value 
[image: image13.wmf]e

 will be observed for the random variable X, summed over all possible values 
[image: image14.wmf]i

q

 for the parameter
[image: image15.wmf]q

.
· 
[image: image16.wmf](

)

e

q

q

|

i

P

=

 - The posterior distribution – after observation of the value 
[image: image17.wmf]e

 for X – probability that the value of 
[image: image18.wmf]q

 is equal to
[image: image19.wmf]i

q

.

There are advantages and disadvantages associated with each of these two statistical approaches.  In the case of traditional statistical analysis, most engineers and scientists have some basic knowledge and training in these techniques.  Since the math involved is typically quite simple, users may utilize the equations without significant computational time.  When the analysis becomes more detailed (i.e. with the Bayesian method), the computational power required to solve the series of equations turns out to be more prohibitive.  With a sufficient amount of data available, the results from traditional analysis are informative enough to be useful.  In this case, the differences between the two specific statistical results should be minimal.

When using traditional methods, there are some disadvantages that should be recognized.  If there are only a few data values or if only poorly identified information is available, the results of traditional techniques are not typically very useful.  When multiple types of data are available, there is no consistent way to combine the data to obtain reasonable results since all data must be treated equally.  Any time new data are obtained, the results must be re-calculated.  There is no way to easily update the model in order to incorporate newly obtained data.

There are many advantages to using Bayesian techniques for statistical analysis.  One of the greatest strengths of Bayesian techniques is the ability to consistently modify a given analysis any time new evidence is gathered.  The term for this process is “Bayesian updating.”  It is achieved by using Equation 1 via the following procedure:

1. First, assume an appropriate distribution 
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 for the random variable X given a value of 
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· Make sure any physical limitations are imposed on the distribution.  For example, a distribution for leak frequency should not allow negative values.

2. Second, assume an appropriate “prior” distribution 
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· This distribution should capture the information that one has prior to incorporating any evidence from actual operating experience.  

· There are multiple ways of obtaining this prior distribution.  Some people like to use completely “non-informative” or very broad prior distributions.    Others like to use “generic” data to define the prior distribution.

· At this point, if no data are available for the component, the results of the Bayesian analysis will reflect the analyst’s prior belief in the probabilities of the different possible values for the random variable X (e.g., component leak frequency).

3. When data for X become available, these data are the 
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 values in Equation 1.  The probabilities associated with these 
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[image: image27.wmf])

|

(

q

X

f

.  Using Equation 1, an “updated” distribution for 
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 is obtained.  This is now the “posterior” distribution for 
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.  This posterior distribution is then used in 
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 in order to obtain the most recent probabilities associated with X.

4. As more and more data become available, the weight assigned to the prior estimate for 
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 automatically decreases since more weight is given to the data and the results of a Bayesian analysis will approach the results of a traditional statistical analysis.

The Bayesian approach provides an analyst with a consistent, unambiguous, mathematical means of changing his or her “total belief” in the probabilities associated with a random variable as new data become available.  It also allows the analyst to incorporate expert knowledge for which there may be no data.

Unlike traditional statistics, it should be noted that the parameter 
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 of the distribution for the random variable X has a distribution also.  In traditional statistics, it is assumed that 
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 has a single “true” value and that an observer’s best estimate for this value becomes more certain as more evidence is collected.  In Bayesian statistics, 
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 has a distribution.  The major “practical” difference becomes clear when we think of traditional sensitivity analyses.  In a traditional sensitivity analysis, one does a complete analysis assuming a value for 
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 and records the results of the model.  The value for 
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 is then changed and the results again recorded.  However, any single trial has as much validity as any other.  Another way of saying this is that we have no way of knowing which outcome is more likely since we do not know the relative likelihoods associated with 
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.  Bayesian analysis has two immediate advantages over traditional analysis in this respect:

1. This type of sensitivity analysis is done automatically since a single Bayesian analysis includes the full range of possible values for the parameter 
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.
2. The results, or outcomes, of the model have probabilities associated with them due to the distribution placed on 
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.  This gives a decision-maker more information with which to work since he or she knows which results are more likely.

There are two major drawbacks to Bayesian analyses.  The first drawback involves the use of prior distributions.  Since prior distributions are subjective, the results of a Bayesian analysis are also somewhat subjective.  In situations where little or no data are available, the results are strongly dependent upon the subjective prior distributions.  This has left Bayesian techniques open to some criticism.  However, very few alternatives have been proposed and the ones that have been proposed have problems of their own which seem to be more extensive than any of the issues associated with Bayesian analysis.  One method to address this issue is to perform sensitivity studies where different  prior distributions are assumed.
The second drawback to Bayesian analyses is the fact that the computational power required is greater than that required for traditional analyses.  Due to this fact and the fact that any results of a Bayesian analysis should approach the results of a traditional analysis if large amounts of data are available, the benefits of using Bayesian techniques are much greater if used when there are little or no historical data to be used.

By comparing the two methods of statistical analysis for use in the QRAs of the hydrogen fueling process, it is apparent that, based on the currently available data, Bayesian techniques should be used rather than traditional means.  Having the ability to generate uncertainty distributions produces more confidence in the calculated values.  The use of this method will provide more flexibility when additional data is presented.  Additionally, Bayesian analysis will allow greater consideration to be placed on more applicable or specific data sets.  These reasons illustrate the decision to use the Bayesian approach for this assessment.
4.  Data Collection
Because data on hydrogen systems is extremely limited, sources from other industries may be used as a baseline for a Bayesian statistical analysis.  Component leakage frequencies have been historically gathered by the chemical processing, compressed gas, nuclear power, and offshore petroleum industries.  Data from all of these different industries have been used to some extent in QRAs of hydrogen facilities.  However, variations in leakage definitions, component classification, and data reliability make it difficult to directly apply the information to hydrogen specific processes.  Unique physical challenges, such as hydrogen embrittlement, and other differences in operating conditions (e.g., pressure and temperature) provide additional uncertainty when applying non-hydrogen leakage frequencies to the risk assessment of a hydrogen facility.  Nevertheless, the identification of the component failure rates from other industries is an appropriate initial phase to the Bayesian process described above.  
Sources used in the data analysis were obtained from a narrow range of available studies (References 5 through 17).  They varied in nomenclature, component specifics, and data determination; however, at the present time it was the most widely accessible information.  It was important to consider the origin of this data and determine whether the information was derived from actual component failures or based on expert judgment.  Making this distinction should provide a greater amount of confidence through the assessment process.  An example of this information may be found in Table 1.  Here some of the differences from each source may be seen.  

	Table 1.  Generic data for valve leakage and rupture frequencies.

	Specific Valve Type
	Severity
	Frequency (/yr)
	Leak Size Description
	Source Type
	Notes

	Manual, 2 inch diameter
	Small Leak
	1.40E-05
	>1 mm 
	Hydrocarbon Process
	This information is for a nominal diameter of >1 mm.    

	Manual, 6 inch diameter
	Small Leak
	4.80E-05
	>1 mm 
	Hydrocarbon Process
	This information is for a nominal diameter of >1 mm. 

	Solenoid Operated
	Small Leak
	8.17E-05
	1  to  50 gpm (water)
	Nuclear
	The frequency is based on Bayesian updates of actual nuclear data.

	No Additional Information
	Small Leak
	8.76E-05
	<50 gpm (water)
	Nuclear
	The frequency for leaks refers to events in which the coolant within the component escapes to the outside environment.  

	Air Operated
	Small Leak
	1.13E-04
	1  to  50 gpm (water)
	Nuclear
	The frequency is based on Bayesian updates of actual nuclear data.

	Motor Operated
	Small Leak
	1.24E-04
	1  to  50 gpm (water)
	Nuclear
	The frequency is based on Bayesian updates of actual nuclear data.

	Hydraulic-operated
	Small Leak
	1.30E-04
	1  to  50 gpm (water)
	Nuclear
	The frequency is based on Bayesian updates of actual nuclear data.

	Manual, 18 inch diameter
	Small Leak
	2.20E-04
	>1 mm 
	Hydrocarbon Process
	This information is for a nominal diameter of >1 mm. 

	Check
	Small Leak
	2.58E-04
	1  to  50 gpm (water)
	Nuclear
	The frequency is based on Bayesian updates of actual nuclear data.

	Actuated, 6 inch diameter, non-pipeline
	Small Leak
	2.60E-04
	>1 mm 
	Hydrocarbon Process
	This information is for a nominal diameter of >1 mm.  

	Manual
	Small Leak
	3.91E-04
	1  to  50 gpm (water)
	Nuclear
	The frequency is based on Bayesian updates of actual nuclear data.

	All types
	Small Leak
	8.76E-04
	No definition of leak size was provided
	Compressed Gas
	The frequency is the mean generic failure rate in compressed gas systems.   

	All Sizes
	Small Leak
	1.00E-03
	1% cross sectional area
	Chemical Process
	Frequency is an estimate based on a hazard assessment.  The hole size for a small leak is considered to be 1% of the cross sectional area of the pipe.

	All types
	Small Leak
	4.38E-03
	No definition of leak size was provided
	Chemical Process
	The frequency is the mean generic failure rate in chemical process systems.    

	No Additional Information
	Small Leak
	1.30E-02
	Gland leak
	Hydrogen Fueling Process
	The frequency is referred to as a gland leak.  

	All Sizes
	Large Leak
	1.00E-04
	10% cross sectional area
	Chemical Process
	Frequency is an estimate based on a hazard assessment.  The hole size for a large leak is considered to be 10% of the cross sectional area of the pipe.

	Manual, 6 inch diameter
	Rupture
	4.80E-07
	>50 mm 
	Hydrocarbon Process
	This information is for a nominal diameter of >50 mm.  

	No Additional Information
	Rupture
	8.76E-07
	>50 gpm (water) or complete failure
	Nuclear
	The frequency for ruptures is defined as a leakage greater than 50 gpm or a complete severance of a pipe.  

	Actuated, 6 inch diameter, non-pipeline
	Rupture
	1.90E-06
	>50 mm 
	Hydrocarbon Process
	This information is for a nominal diameter of >50 mm. 

	Manual, 18 inch diameter
	Rupture
	2.30E-06
	>50 mm 
	Hydrocarbon Process
	This information is for a nominal diameter of >50 mm.  

	No Additional Information
	Rupture
	3.50E-06
	>50 gpm (water) or complete failure
	Nuclear
	An external rupture is defined as a leakage greater than 50 gpm or a complete severance of a pipe.  

	Solenoid Operated
	Rupture
	5.72E-06
	> 50 gpm (water)
	Nuclear
	The frequency is based on Bayesian updates of actual nuclear data.

	Air Operated
	Rupture
	7.88E-06
	> 50 gpm (water)
	Nuclear
	The frequency is based on Bayesian updates of actual nuclear data.

	Motor Operated
	Rupture
	8.62E-06
	> 50 gpm (water)
	Nuclear
	The frequency is based on Bayesian updates of actual nuclear data.

	Hydraulic-operated
	Rupture
	9.02E-06
	> 50 gpm (water)
	Nuclear
	The frequency is based on Bayesian updates of actual nuclear data.

	All Sizes
	Rupture
	1.00E-05
	100% cross sectional area
	Chemical Process
	Frequency is an estimate based on a hazard assessment.  The hole size for a rupture is considered to be 100% of the cross sectional area of the pipe.

	Check
	Rupture
	1.80E-05
	> 50 gpm (water)
	Nuclear
	The frequency is based on Bayesian updates of actual nuclear data.

	Manual
	Rupture
	2.73E-05
	> 50 gpm (water)
	Nuclear
	The frequency is based on Bayesian updates of actual nuclear data.

	All types
	Rupture
	4.38E-05
	No definition of leak size was provided
	Compressed Gas
	The value is described as for an external rupture.

	All types
	Rupture
	2.63E-04
	No definition of leak size was provided
	Chemical Process
	The value is described as for an external rupture.


Although many data sources provide leak rates as a function of leak size, very few provide leak rates as a function of pressure.  Thus, the analysis performed in this study does not differentiate leak rates for systems operating at different pressures.  
Limited hydrogen-specific leakage data was obtained through the efforts of members of the Compressed Gas Association for six components.  The results of traditional statistical analysis of that data are shown in Table 2.   For many components the fact that there are no reported failures prohibits estimating the MLE or the lower confidence bound (5th percentile).  However, an upper confidence bound (95th percentile) can still be estimated.  As shown in Table 2, the available hydrogen data is not sufficient for the application of traditional statistical analysis, thus the Bayesian model described in the following section was used to combine this limited data with generic estimates of component leakage rates.  
	Table 2.  Traditional statistical analysis of hydrogen data.


	 
	 
	MLE
	5.0%
	95.0%
	 
	 
	MLE
	5.0%
	95.0%

	Compressor
	Very Small
	8.7E-02
	4.5E-02
	1.5E-01
	Joints
	Very Small
	3.5E-05
	2.3E-05
	5.1E-05

	
	Minor
	1.9E-02
	3.4E-03
	6.1E-02
	
	Minor
	0.0E+00
	0.0E+00
	6.1E-06

	
	Medium
	1.9E-02
	3.4E-03
	6.1E-02
	
	Medium
	4.1E-06
	7.3E-07
	1.3E-05

	
	Major
	0.0E+00
	0.0E+00
	2.9E-02
	
	Major
	2.1E-06
	1.1E-07
	9.7E-06

	
	Rupture
	0.0E+00
	0.0E+00
	2.9E-02
	
	Rupture
	2.1E-06
	1.1E-07
	9.7E-06

	
	 
	 
	 
	 
	
	 
	 
	 
	 

	Cylinders
	Very Small
	0.0E+00
	0.0E+00
	1.8E-06
	Pipes
	Very Small
	0.0E+00
	0.0E+00
	1.9E-05

	
	Minor
	0.0E+00
	0.0E+00
	1.8E-06
	
	Minor
	0.0E+00
	0.0E+00
	1.9E-05

	
	Medium
	0.0E+00
	0.0E+00
	1.8E-06
	
	Medium
	0.0E+00
	0.0E+00
	1.9E-05

	
	Major
	0.0E+00
	0.0E+00
	1.8E-06
	
	Major
	0.0E+00
	0.0E+00
	1.9E-05

	
	Rupture
	0.0E+00
	0.0E+00
	1.8E-06
	
	Rupture
	0.0E+00
	0.0E+00
	1.9E-05

	
	 
	 
	 
	 
	
	 
	 
	 
	 

	Hoses
	Very Small
	5.9E-04
	2.6E-04
	1.2E-03
	Valves
	Very Small
	2.9E-03
	1.8E-03
	4.4E-03

	
	Minor
	0.0E+00
	0.0E+00
	3.0E-04
	
	Minor
	5.8E-04
	1.6E-04
	1.5E-03

	
	Medium
	0.0E+00
	0.0E+00
	3.0E-04
	
	Medium
	0.0E+00
	0.0E+00
	5.8E-04

	
	Major
	0.0E+00
	0.0E+00
	3.0E-04
	
	Major
	0.0E+00
	0.0E+00
	5.8E-04

	
	Rupture
	0.0E+00
	0.0E+00
	3.0E-04
	
	Rupture
	0.0E+00
	0.0E+00
	5.8E-04


5.  Hydrogen Leak Frequency Model

A Bayesian model was developed in order to predict the probability of a leak in various hydrogen components.  The model assumes that the mean leak frequency of any component is linearly related to the logarithm of the fractional flow area of the leak.  Actual data from the offshore industry supports this relationship [17].  The fractional flow area is the ratio of the leak area to the total flow area of the pipe.  The coefficients of the linear relationship – (
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 and 
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) – are assumed to be normally distributed.  The model is described by the following equations and assumed prior distributions: 

[image: image42.wmf](

)

(

)

(

)

(

)

(

)

(

)

1

,

1

~

,

~

log

10

,

0

~

10

,

0

~

log

,

3

2

3

1

1

2

,

Gamma

N

LF

N

N

FLA

j

j

j

LF

j

j

j

LF

t

t

m

a

a

a

a

m

-

-

+

=


The variables in the model have the following descriptions:

· 
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 - Mean of the natural logarithm of the recorded leak frequency (also called mean leak frequency in the subsequent discussion).  In this model, it is the “true” natural logarithm of the leak frequency.

· FLA – Fractional leak area.  This is the ratio of the leak area to the total cross-sectional flow area of the pipe.

· LF – The recorded leak frequency. 
· 
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 - Parameter relating mean leak frequency to FLA.

· 
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 - Scaling parameter for the exponential function relating 
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 and FLA.

· 
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 - Precision of the distribution describing the recorded leak frequency.  The precision of a normal random variable is defined as the multiplicative inverse of the variance.  Assumed to be a Gamma distribution.
· j – Subscript used to enumerate the different leak sizes.  

For this analysis, the leaks were divided into the following five sizes based on the data categories defined in generic data sources:

· Very Small- Leak area is 0.01 % of total flow area

· Minor – Leak area is 0.1% of total flow area

· Medium – Leak area is 1% of total flow area

· Major – Leak area is 10% of total flow area

· Rupture – Leak area is 100% of total flow area

The first phase of the Bayesian process used the data obtained from generic sources (References 6 through 16).  First, the means and standard deviations of the leak rates from these different sources were determined for each component.  This data was then used to define the parameters of the prior distributions for each component.  This is appropriate since the data is an initial estimate of the distribution parameters.  The results of the first phase of the Bayesian analysis (estimates of generic component leakage frequencies) were then used to define the parameters of the prior distributions for the second phase of the Bayesian model.  In the second phase, hydrogen-specific data were used to update the model to provide the final posterior distribution that can be used in a hydrogen facility QRA.  The results of the Bayesian analysis for each specific component are provided in Table 3.  Note that hydrogen data were not available for some components and thus only generic leak frequencies could be produced.
	Table 3.  Results of Bayesian analysis of hydrogen component leakage frequencies.

	Component
	Leak size
	Generic Leak Frequencies (Phase 1)
	Hydrogen Leak Frequencies (Phase 2)

	
	
	Mean
	5.0%
	Median
	95.0%
	Mean
	5.0%
	Median
	95.0%

	Compressor
	Very Small
	8.3E+00
	1.8E-01
	2.1E+00
	2.6E+01
	1.8E-01
	1.2E-01
	1.8E-01
	2.5E-01

	
	Minor
	2.3E-01
	1.5E-02
	1.1E-01
	7.1E-01
	2.2E-02
	7.8E-03
	2.0E-02
	4.4E-02

	
	Medium
	1.2E-02
	7.9E-04
	5.2E-03
	3.4E-02
	7.9E-03
	1.4E-03
	5.9E-03
	2.1E-02

	
	Major
	3.9E-04
	6.6E-05
	2.5E-04
	1.0E-03
	2.1E-04
	3.5E-05
	1.4E-04
	5.7E-04

	
	Rupture
	9.7E-05
	1.2E-06
	1.2E-05
	1.3E-04
	3.4E-05
	1.3E-06
	1.2E-05
	1.1E-04

	Cylinders
	Very Small
	2.2E+00
	4.1E-02
	6.4E-01
	7.4E+00
	1.1E-06
	1.7E-07
	9.8E-07
	2.7E-06

	
	Minor
	4.3E-02
	2.3E-03
	2.0E-02
	1.3E-01
	9.8E-07
	1.9E-07
	8.3E-07
	2.3E-06

	
	Medium
	9.5E-04
	1.2E-04
	6.3E-04
	2.6E-03
	6.7E-07
	1.5E-07
	5.6E-07
	1.6E-06

	
	Major
	2.7E-05
	5.3E-06
	1.8E-05
	7.1E-05
	3.9E-07
	9.0E-08
	3.2E-07
	9.0E-07

	
	Rupture
	8.4E-07
	1.5E-07
	6.1E-07
	2.1E-06
	2.1E-07
	4.8E-08
	1.7E-07
	5.0E-07

	Filters
	Very Small
	2.5E-01
	2.0E-04
	5.3E-03
	1.4E-01
	NA
	NA
	NA
	NA

	
	Minor
	2.3E-02
	4.1E-04
	5.1E-03
	6.1E-02
	NA
	NA
	NA
	NA

	
	Medium
	4.2E-02
	4.1E-04
	4.8E-03
	5.5E-02
	NA
	NA
	NA
	NA

	
	Major
	7.7E-03
	1.1E-03
	4.6E-03
	2.0E-02
	NA
	NA
	NA
	NA

	
	Rupture
	5.4E-02
	9.1E-04
	4.4E-03
	2.1E-02
	NA
	NA
	NA
	NA

	Flanges
	Very Small
	9.0E-02
	1.4E-03
	2.0E-02
	3.0E-01
	NA
	NA
	NA
	NA

	
	Minor
	5.3E-03
	2.8E-04
	2.2E-03
	1.7E-02
	NA
	NA
	NA
	NA

	
	Medium
	5.2E-03
	6.3E-06
	2.4E-04
	9.0E-03
	NA
	NA
	NA
	NA

	
	Major
	4.1E-05
	6.8E-06
	2.6E-05
	1.0E-04
	NA
	NA
	NA
	NA

	
	Rupture
	2.5E-05
	1.4E-07
	2.9E-06
	5.9E-05
	NA
	NA
	NA
	NA

	Hoses
	Very Small
	3.7E+01
	1.1E+00
	1.2E+01
	1.3E+02
	1.1E-03
	6.6E-04
	1.1E-03
	1.7E-03

	
	Minor
	2.7E+00
	2.1E-01
	1.4E+00
	8.1E+00
	2.0E-04
	3.7E-05
	1.8E-04
	4.4E-04

	
	Medium
	2.4E-01
	3.4E-02
	1.6E-01
	6.4E-01
	1.7E-04
	3.9E-05
	1.5E-04
	3.8E-04

	
	Major
	2.4E-02
	5.0E-03
	1.7E-02
	6.3E-02
	1.6E-04
	3.8E-05
	1.4E-04
	3.4E-04

	
	Rupture
	8.7E-03
	1.5E-04
	2.0E-03
	2.4E-02
	7.3E-05
	6.2E-06
	5.2E-05
	2.1E-04

	Joints
	Very Small
	1.9E+00
	5.2E-02
	5.4E-01
	6.4E+00
	7.0E-05
	5.2E-05
	7.0E-05
	9.1E-05

	
	Minor
	2.1E-01
	1.6E-02
	1.0E-01
	6.7E-01
	3.4E-06
	2.0E-07
	2.7E-06
	9.3E-06

	
	Medium
	4.1E-02
	3.4E-03
	1.8E-02
	1.2E-01
	7.6E-06
	2.4E-06
	7.0E-06
	1.5E-05

	
	Major
	4.3E-03
	1.2E-03
	3.6E-03
	9.7E-03
	6.8E-06
	1.6E-06
	6.0E-06
	1.4E-05

	
	Rupture
	9.2E-04
	2.0E-04
	6.3E-04
	2.3E-03
	6.1E-06
	1.3E-06
	5.3E-06
	1.3E-05

	Pipes
	Very Small
	7.8E-04
	6.1E-05
	3.6E-04
	2.1E-03
	8.6E-06
	1.6E-06
	7.1E-06
	2.1E-05

	
	Minor
	1.0E-04
	1.5E-05
	6.2E-05
	2.7E-04
	4.5E-06
	8.6E-07
	3.6E-06
	1.1E-05

	
	Medium
	4.0E-05
	8.2E-07
	1.1E-05
	1.4E-04
	1.7E-06
	9.1E-08
	9.5E-07
	6.1E-06

	
	Major
	5.4E-06
	2.0E-07
	1.8E-06
	1.8E-05
	8.9E-07
	5.2E-08
	4.7E-07
	3.1E-06

	
	Rupture
	5.3E-06
	8.3E-09
	3.2E-07
	1.2E-05
	5.6E-07
	4.8E-09
	1.5E-07
	2.5E-06

	Valves
	Very Small
	2.3E-02
	1.8E-03
	1.1E-02
	7.4E-02
	5.7E-03
	4.1E-03
	5.6E-03
	7.5E-03

	
	Minor
	6.4E-03
	4.1E-04
	1.9E-03
	8.8E-03
	7.4E-04
	3.1E-04
	6.9E-04
	1.3E-03

	
	Medium
	1.4E-03
	2.2E-05
	3.1E-04
	4.4E-03
	9.6E-05
	6.8E-06
	6.3E-05
	3.0E-04

	
	Major
	7.2E-05
	1.5E-05
	5.2E-05
	1.7E-04
	4.1E-05
	9.7E-06
	3.3E-05
	1.0E-04

	
	Rupture
	3.0E-05
	7.1E-07
	8.4E-06
	1.0E-04
	1.4E-05
	5.8E-07
	6.2E-06
	5.5E-05


Figure 1 shows the results of the data analysis for pipes.  The generic prior was estimated utilizing 60 published leak frequencies (shown as blue diamonds on Figure 1) that include values from the compressed gas, chemical processing, hydrocarbon industry, and nuclear sources.  As indicated, the generic median (i.e., the 50th percentile) is a straight line on the log-log plot since that is the model that was assumed in the Bayesian model.  The median leak frequency is at the center of the available data which was binned as medium (1% flow area), major (10% flow area), and rupture (100% flow area) leak sizes.    The Bayesian analysis resulted in estimates for small leak sizes based on these published leak frequencies.  The mean leak frequencies are higher than the median values since the assumed distribution is lognormal.  The 5th and 95th percentiles for the leak frequency distributions for the five leak sizes (shown as the black brackets in Figure 1) encompass the data except for a couple of outliers.
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Figure 1.  Results of Bayesian analysis for pipe leakage frequency.

The hydrogen data that were available indicated that there were no leakage events of any size over a rather large operating history of pipes in hydrogen systems.  The fact that there were no failures in a large operating history suggests that the upper confidence limit (95th percentile) of the hydrogen-specific leak frequencies obtained from the traditional statistical analysis, regardless of the size of the leak,  are 1.9E-5/yr (see Table 2) which are less than the generic values for the small leak sizes. Using the available hydrogen pipe information, the generic prior distributions were updated to obtain the estimated leakage frequency distributions for hydrogen pipes (shown in red in Figure 1).  As indicated in the figure, the estimated hydrogen pipe leak frequencies for 0.1% to 1% flow area leaks are 1 to 2 orders of magnitude less than the generic estimates.  For the larger leak sizes, the hydrogen estimates are much closer (a factor of 2 to 4 less).  

As shown in Figure 2, updating from generic data only to generic and hydrogen-specific data changed both the central tendency (i.e., median value) and the precision (i.e. spread) of the leak frequency distributions.  The large spread in the generic prior is due to the large range of values for the minor leak frequency that were found in the literature.  The smaller width in the estimated hydrogen leak frequency distribution is due to the fact that a substantial amount of hydrogen pipe operating history was available.  The lower median values for the hydrogen estimate is again due to the fact that no failures were observed in the data that was provided.

[image: image48]
Figure 2.  Probability density functions from the generic (red) and hydrogen (blue) Bayesian analysis for minor pipe leaks (<0.1% flow area).  

Figure 3 presents the results of the Bayesian analysis for pipe joints.   Only a few generic estimates were obtained from the literature for pipe joints and that data did not specify what types of joints were considered.  The generic leak frequencies are relatively high compared to the pipe leak frequencies discussed above.  The hydrogen-specific failure data that were obtained indicated that different size leakages had occurred over a large operating history.   The maximum likelihood estimates based on this data (included on Figure 3) indicate that the expected hydrogen leak frequencies for pipe joints could be substantially smaller than the values found in the literature.  As indicated in Figure 3, the estimated hydrogen leak rates for joints obtained from the Bayesian analysis is from 2 to 5 orders of magnitude less than the generic estimates depending on the size of the leak.  The width of the probability distributions were also generally smaller for the hydrogen estimates except for the 0.1% leak size since no hydrogen leakage events were identified for that leak size.  It should be noted that these estimated frequencies do not differentiate between the types of joints used and thus encompass all types of joints.  It is possible that specific types of joints may have higher or lower leakage potential but the data analysis performed to date does not provide that degree of resolution.
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Figure 3.  Results of Bayesian analysis for pipe joint leak frequency.
The results of the Bayesian analysis for compressors are shown in Figure 4.  The compressor results are indicative of a component in which there are a significant number of hydrogen leakage events in a relatively short operating experience.  As with pipe joints, very few leak frequencies were found for compressors in the literature and the results of the Bayesian analysis resulted in a median generic leak frequency greater than 1 for very small leaks (defined as <0.01% of the connecting pipe flow area).  Even though there were a relatively large number of very small hydrogen leakage events, the maximum likelihood estimate (MLE) was below the estimated generic values.  As a result of the inclusion of the hydrogen data in the Bayesian process, the estimated hydrogen-specific leakage frequencies are less than the generic estimates for leak sizes equal to 0.01% and 0.1% of the connecting pipe flow area.  In contrast, the hydrogen leakage data for a 1% leak size resulted in an MLE (using traditional statistical analysis) that is greater than estimated generic median.  As a result of inclusion of the hydrogen data for 1% leaks in the Bayesian model, the estimated hydrogen-specific leak frequencies for a 1% or greater leak area are nearly the same as the estimated generic values.
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Figure 4.  Results of Bayesian analysis for compressor leak frequency.
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Finally, the estimated leak frequencies for valves are shown graphically in Figure 5.  A significant number of leak frequencies were found in the literature.  In addition, some hydrogen-specific leak events were also identified in the 0.01% and 0.1% range.  As indicated in Figure 5, the estimated hydrogen leak frequencies are similar to those for the generic estimates with the largest deviation occurring for the 1% leak size.

Figure 5.  Results of Bayesian analysis for valve leak frequency.
6.  Sensitivity Studies

The results of a Bayesian analysis can be affected by the prior distribution selected in the analysis.  In addition, for this specific analysis, the estimated generic and hydrogen-specific leak frequencies can be affected by which available leak frequencies are included in the analysis.  To illustrate the potential impacts, several sensitivity studies were performed.  
Figure 6 shows the results for pipe leak frequencies when only compressed gas (CG) leak frequencies are used to generate a generic prior distribution.  Compressed gas leak frequencies may be the most appropriate for estimating hydrogen-specific estimates.  Of the 60 available pipe leak frequencies used in this study, only four are from CG sources.  As indicated in Figure 6, the CG values are on the upper end of the range of values found in the literature.  Thus, when only the CG values are used, the estimated generic leak frequencies increase for all leak sizes.  The estimated hydrogen leak frequencies also increase for leak sizes greater than 1% of the pipe flow area because the hydrogen information (no failures) has little impact on the frequencies for these leak sizes.  For smaller leak sizes, the hydrogen information has more of an impact since it reflects a lower estimate than provided by the estimated generic leak frequencies.
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Figure 6.  Sensitivity of estimated pipe leak frequencies when only compressed gas (CG) is utilized to estimate a generic prior distribution.
Figure 7 provides the results of the estimated valve leak frequencies when data from the nuclear industry is not included.  Nuclear valve leak rates reflect leakage rates of high-pressure water or steam which likely would be substantially different for leakage rates for hydrogen gas.  Because the nuclear valve leak rates are centered in the values from other sources, the exclusion of the nuclear leak rates does not have an impact on either the estimated generic or hydrogen leak rates.
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Figure 7.  Sensitivity of estimated valve leak frequencies when nuclear data is excluded from determining the generic prior distribution.
The results of these sensitivity studies shows that the impact of using leak rates from specific types of sources can be variable.  Although compressed gas sources are probably the most applicable for hydrogen components, the scarcity of such sources requires that other information from other industries be utilized.  Different weights can be assigned to values available from different industries in the Bayesian process utilized in the study.  Additional work is required to determine how to properly weight different sources of leak rates.
7.  Summary
The movement towards a hydrogen fuel economy requires careful consideration and proper analysis.  The installation of fueling stations requires an appropriate level of planning and assessment.  By performing a QRA for a hydrogen facility, an overall assessment of the risk may be gathered.  Weaknesses in the facility design and operation can be identified and addressed to make the facilities safer.  The performance of QRAs requires the selection of appropriate data values for quantifying the QRA models.  This paper describes the use of both traditional and Bayesian approaches for estimating one parameter necessary for hydrogen facility QRAs – component leakage frequencies.
With a large amount of hydrogen-specific information, traditional statistical methods may be used to determine the necessary values.  However, since there is only a limited amount of hydrogen data currently available, Bayesian analysis is the best option at this time for developing the required component leakage frequencies.    The use of a Bayesian approach allows for the differentiation of various sources with varying amounts of importance, provides probability distributions that can be propagated through QRA models, and provides a method for determining leakage rates for different sizes of leaks.  The results of a Bayesian analysis can also be updated as new data are gathered.  If in the future a great amount of hydrogen data is collected, the results of traditional and Bayesian statistical approaches will converge.

The results of the Bayesian analysis reported in this paper indicate that some of the estimated component leak rates are significantly lower than generic values that have been used in QRAs of hydrogen facilities.  Thus, the risk contribution from component leakage events may be significantly overestimated if generic, non-hydrogen leak frequencies are utilized in QRAs.
Sensitivity studies also indicate that the estimated generic and hydrogen-specific leakage rates can be affected by which published leak rates are utilized in the model.  Although compressed gas sources are probably the most applicable for hydrogen components, the scarcity of such sources requires that other information from other industries be utilized.  Different weights can be assigned to values available from different industries in the Bayesian process utilized in the study.  Additional work is required to determine how to properly weight different sources of leak rates.

Finally, an effort is required by the hydrogen industry to collect  failure data for the different components utilized in hydrogen facilities.  This should include not only data on major failure events but also on more frequent and less significant events.  The collection and review of that data will provide valuable insights on what components are affecting system operation and thus allow facility designers and operators to improve their facilities from both safety and operability perspectives. The collected data will also allow the generation of more accurate parameter estimates for use in QRAs of hydrogen facilities. 
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