Renewable H₂ from DFC[®] Fuel Cell

Renewable Hydrogen Co-Production from a High Temperature Fuel Cell

Fred Jahnke Pinakin Patel, Daniel Tyndall, Frank Holcomb March 31, 2008

POWERING A CLEANER FUTURE TODAY

FuelCellEnergy

Acknowledgement

Financial Support

- U.S. DoD Army Corps of Engineers ERDC-CERL
- Air Products and Chemicals, Inc. (DOE-EERE)
- FuelCell Energy, Inc.

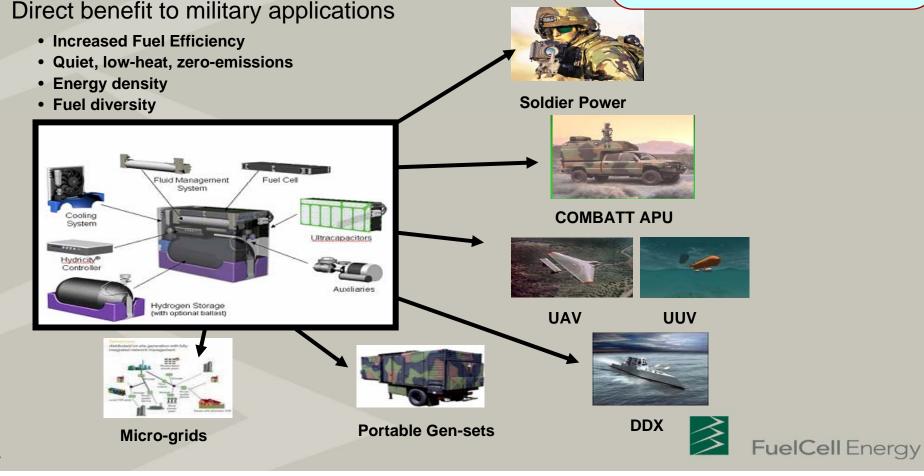
Disclaimer

This presentation contains forward-looking statements, including statements regarding the company's plans and expectations regarding the development and commercialization of fuel cell technology. All forward-looking statements are subject to risks and uncertainties that could cause actual results to differ materially from those projected. The forward-looking statements speak only as of the date of this presentation. The company expressly disclaims any obligation or undertaking to release publicly any updates or revisions to any such statements to reflect any change in the company's expectations or any change in events, conditions or circumstances on which any such statements are based.

Background – FuelCell Energy

- #1 high temperature stationary fuel cell manufacturer and developer including carbonate and solid oxide applications
- Delivering commercial products with advanced Direct FuelCell[®] technology
- > Over 43 MW of electricity generating capacity installed/on order to date
 - California/West Coast: 19.6 MW
 - Japan/Korea: 18.0 MW
 - Northeast/Canada: 4.5 MW
 - Europe: 1.3 MW
- Headquarters in Danbury, CT
 Manufacturing Facilities in Torrington, CT
 SOFC Division in Calgary, Alberta, Canada
- NasdaqNM:FCEL

Background – Air Products


- > Major Supplier of Industrial Gases
- Prime contractor for DOE contract to demonstrate a Hydrogen Energy Station (HES) to provide H2, power and heat
- Expert in PSA technology used for purification of hydrogen from syngas, including gas generated by high temperature fuel cells
- Expert in H2 filling stations with over 70 built world wide

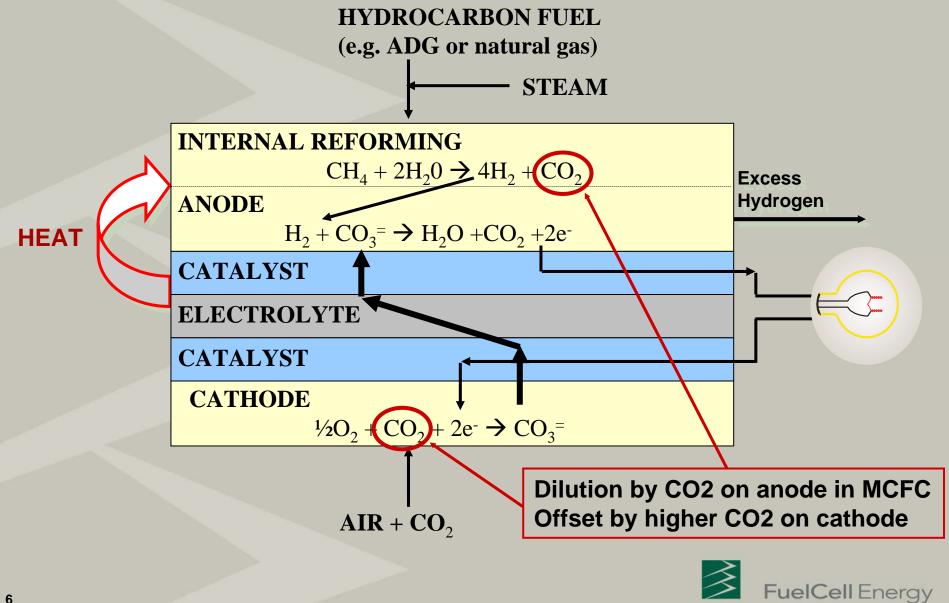
Background – DOD

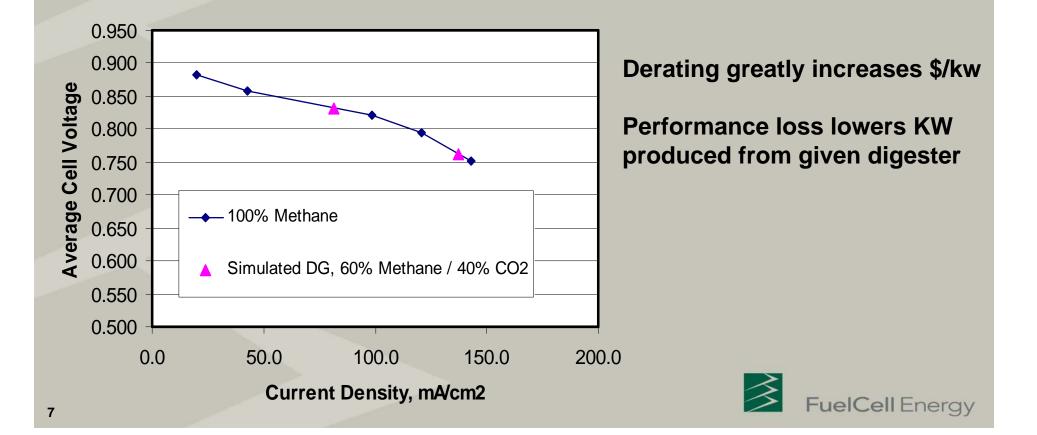
- Major user of fuels
- Goal to maximize renewable energy use
 - Near term H2 for fork lifts

Nation's single largest energy user (1% of total U.S. energy use & 78% of Federal energy use)

FuelCell Energy Commercial Fuel Experience

- Fuels that commercial DFC products have
 operated on:
 Renewable Fuels
 - Pipeline natural gas
 - Liquid Natural Gas or LNG
 - Anaerobic Digester Gas or ADG
 - Propane (Demonstrated, Unit on Order)
 - Coal mine methane (Demonstration Only)
- FCE has limited experience with the following fuels, but they can used if properly treated:
 - Land Fill Gas or LFG
 - Synthesis gas or Syngas


Note: Depending on composition, fuels other than natural gas and ADG may require de-rating of powerplant output.


Operation – Carbonate DFC® Technology

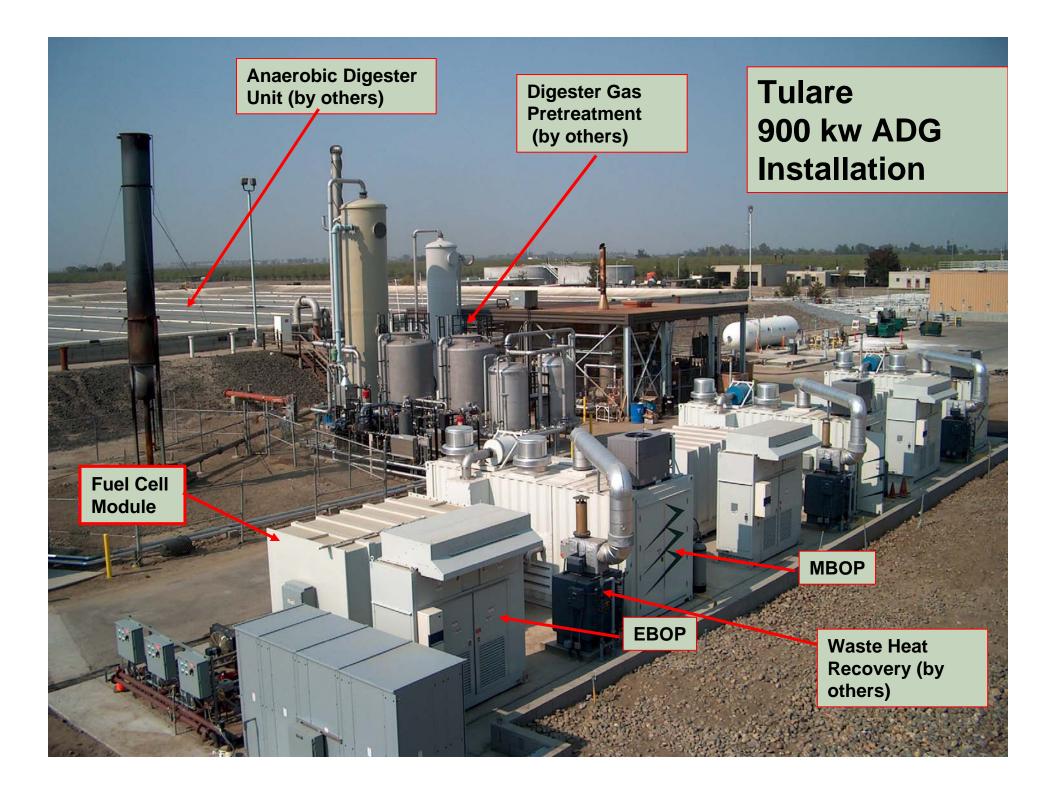
Operation – Carbonate DFC® Technology

DFC units uniquely suitable for renewable fuel

- No derating
- No performance loss

Overview of Direct FuelCell Biogas Applications

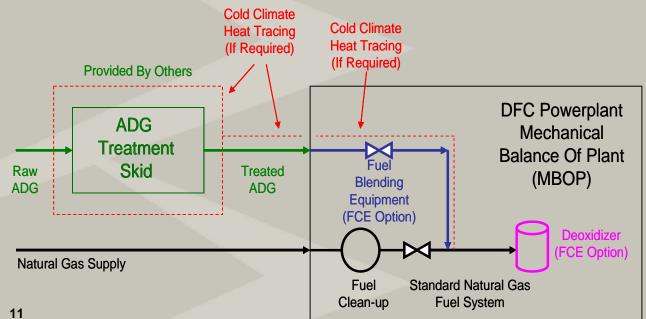
Site	Power plant Model (s)	Fuels (s)
King County Wastewater Treatment Plant, Renton WA	1 x DFC1500	ADG, NG
Kirin Brewery, Toride Japan	1 x DFC300	ADG, C3 backup
City of Fukuoka Treatment Plant, Fukuoka Japan	1 x DFC300	ADG
LA Sanitation Palmdale WWT Plant, Los Angeles, CA	1 x DFC300	ADG
City of Santa Barbara El Estero WWT Facility, CA	2 x DFC300	ADG
Sierra Nevada Brewery Company, Chico, CA	4 x DFC300	ADG/NG blending
Tokyo Super Eco Town food recycling facility, Japan	1 x DFC300	ADG
Kyoto Eco-Energy Project (KEEP) food processing plant waste, Kyoto, Japan	1 x DFC300	ADG
Tancheon Sewage Treatment Plant, Seoul, Korea	1 x DFC300	ADG
Ahlen Wastewater Treatment Facility, Germany	1 x HotModule	ADG
City of Tulare WWT Facility, Tulare, CA	3 x DFC300	ADG
Dublin San Ramon Services District WWT facility, Pleasanton CA	2 x DFC300	ADG
City of Rialto WWT facility, Rialto, CA	3 x DFC300	ADG


FuelCell Energy

Overview of Direct FuelCell Biogas Applications

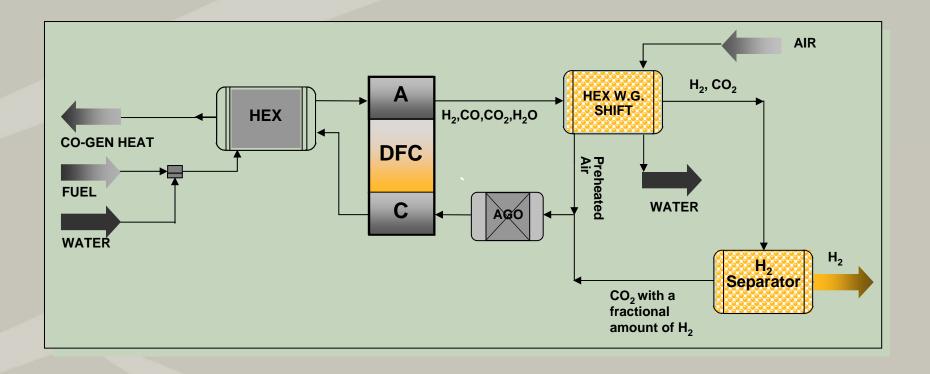
Units on Order Site	Power plant Model (s)	Fuels (s)
Gills Onion food waste processing facility, Oxnard, CA	2 x DFC300	ADG
City of Riverside WWT facility, Riverside, CA	1 x DFC1500	ADG
Turlock Irrigation District WWT facility, Turlock, CA	1 x DFC1500	ADG
Eastern Municipal Water District WWT facility, Moreno Valley, CA	3 x DFC300	ADG
Linde Group, distributed biogas, San Diego, CA	3 x DFC1500, plus 1x DFC300	ADG

- 11 Current locations in California;
- 26 units;
- 16 MA units which are easily converted to H2 production



Fuel Blending / Switching Option

- The fuel blending option is recommended for maximum reliability.
- Blending control logic maximizes the use of ADG only blends in natural gas when full ADG flow is unavailable.
- Switches completely to natural gas when no ADG is available.


For fuel blending applications, the ADG is cleaned in an ADG Treatment Skid.

Configuration – H2 Recovery

Anode Outlet Gas (H2 Source)

Composition

		ADG	ADG Feed		NG Feed			
			Dry / Shifted		Dry / Shifted			
-	H2	11%	23%	13%	28%			
-	H2O	36%	-	39%	-			
•	СО	6%	1%	6%	1%			
•	CO2	47%	76%	41%	71%			

Anode Gas needs to be cooled, pressurized and purified, but extracted H2 represents an additional "free" revenue stream for combined H2 + Power solution

Heat and Material Balance with ADG feed

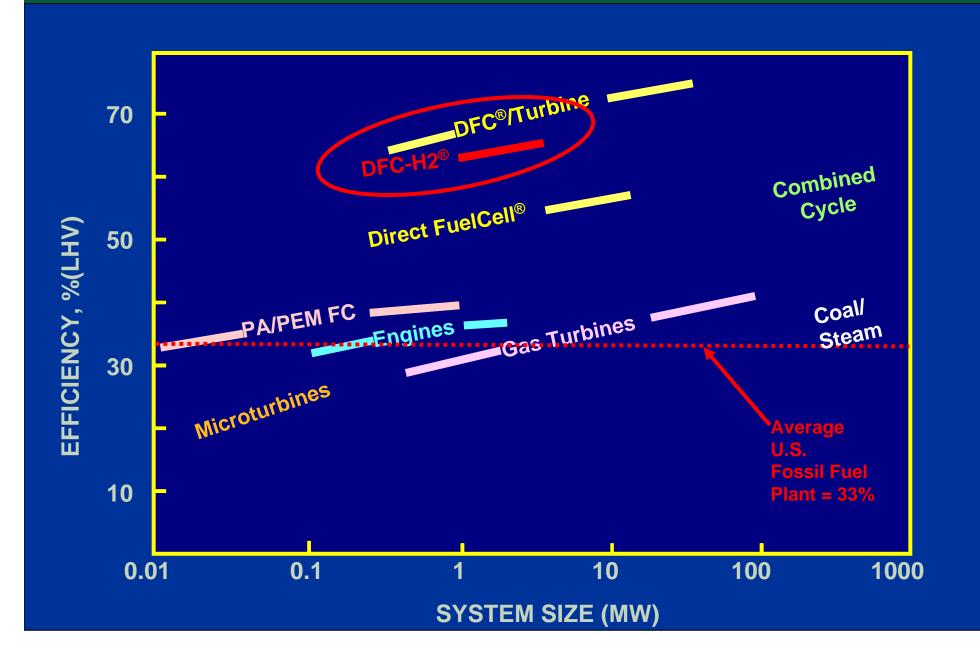
Stream No.		1	2		3	4		5		6	
Name	Д	vir	Fee	ed	Net Power to	Hydro	igen	Water E	Export	Exha	iust
					Grid	-	Ī				
Molar flow Ibmol/h	86.1	24	12.2	5	245 kw	7.43	3	4.73	3	90.4	4
Mass flow Ib/h	2,47	/8.6	333.	.6		15.	0	85.3	3	2,719	3.1
Temp F	59	0	75 '	•		100	•	132	•	319	•
Pres psia					Gross Power	16	5				
					306 kw	85.0%	PSA H2	2 Recover	у		
Components	lb-mole/hr	mole fraction	lb-mole/hr	mole fraction		lb-mole/hr	mole fraction	lb-mole/hr	mole fraction	lb-mole/hr	mole fraction
Hydrogen	0.00	.000	0.00	.000	Power H2	7.43	1.000	0.00	.000	0.00	.000
Methane	0.00	.000	7.35	.600	Purification	0.00	.000	0.00	.000	0.03	.000
Carbon Monoxide	0.00	.000	0.00	.000	61 kw	0.00	.000	0.00	.000	0.00	.000
Carbon Dioxide	0.00	.000	4.90	.400		0.00	.000	0.00	.000	12.22	.135
Water	0.87	.010	0.00	.000	Waste Heat	0.00	.000	4.73	1.000	3.74	.041
Nitrogen	67.48	.782	0.00	.000	(to 120°F)	0.00	.000	0.00	.000	67.48	.746
Oxygen	17.89	.207	0.00	.000	53 kw	0.00	.000	0.00	.000	6.96	.077
Ethane	0.00	.000	0.00	.000		0.00	.000	0.00	.000	0.00	.000
Propane	0.00	.000	0.00	.000		0.00	.000	0.00	.000	0.00	.000
I-Butane	0.00	.000	0.00	.000		0.00	.000	0.00	.000	0.00	.000
N-Butane	0.00	.000	0.00	.000		0.00	.000	0.00	.000	0.00	.000
Total	86.24	1.000	12.25	1.000		7.43	1.000	4.73	1.000	90.44	1.000
Heat Content, kw	0.0	kw	743.6		244.6 kw	226.6		0.0 k	W	3.0 k	.w
% of Feed KW			100.0	0%	32.9%	30.5	5%				
Trigonoration Ef	ficionau	70.5%	(Not Dow	or + Uha	drogon + Evnort	Heat) / Eu	<u>ما</u>				
Trigeneration Efficiency 70.5% (Net Power + Hydrogen + Export Heat) / Fuel Fuel Power Efficiency 59.1% Gross Power / (Total Fuel - Hydrogen fuel value) Fuel											
			Gross Power / (Total Fuel - Hydrogen fuel value)								
Hydrogen	Efficiency		6 (Hydrogen - Purification Power) / Hydrogen 6 (Net Power + Hydrogen) / Fuel								
Overall E	inciency	03.4%	(Net FOW	er + Hyt	liogen)/ruei			$\boldsymbol{<}$		Cell Fr	

/

FuelCell Ener

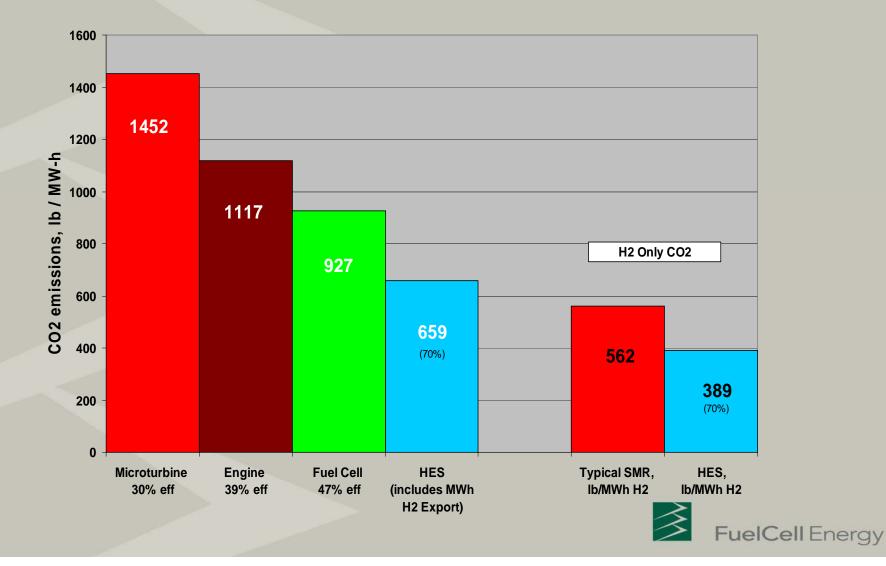
gy

Biogas impact on system performance is minimal


	Units	NG	Biogas
Overall Efficiency (without waste heat)	LHV	66%	63%
(Net Power + Hydrogen Product) / (Fuel)			
Power Efficiency	LHV	49%	47%
Net Power / (Total Fuel – Hydrogen Product)			
Hydrogen Efficiency	LHV	77%	73%
(Hydrogen Product – Purification Power) / Hydrogen Product			
Hydrogen Product	Nm3/hr	~ 80	~76
Net Power w/o & w Hydrogen	kW	~ 300 / 250	~300/240
Natural Gas / Biogas Flow	Nm3/hr	~ 74	~115*

DFC performance has no impact from Biogas Small impact on PSA performance due to higher CO2 in gas to PSA

* Includes ~70 nm3/hr of methane, balance is CO2



High Efficiency for Distributed Generation of Power and H2

Reduced CO2 Emissions

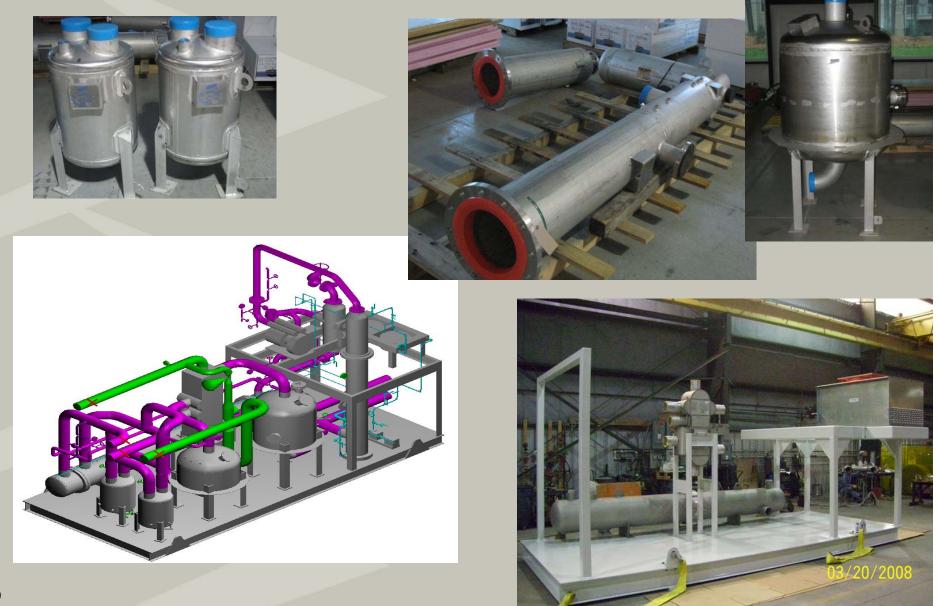
CO2 Emissions Reduced ~30% by HES

17

NOX and SOX Emissions

	NO _X (Ib/MWh)	SO _x (Ib/MWh)	CO ₂ (Ib/MWh)
Average US Fossil Fuel Plant	4.200	9.21	2,017
Microturbine (60 kW)	0.490	0	1,862
Small Gas Turbine (250 kW)	0.467	0	1,244
DFC Fuel Cell 47% efficiency	0.016	0	967
DFC Fuel Cell – CHP 80% efficiency	0.016	0	545

NO_x and SO_x are negligible compared to conventional technologies

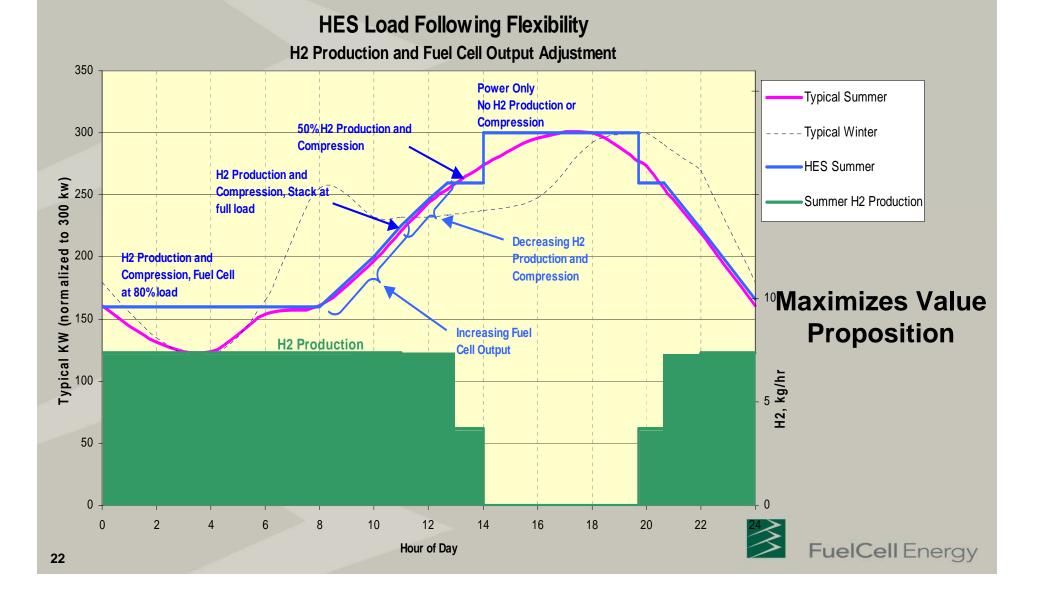


Current Status

- FuelCell Energy and Air Products prototype unit are constructing the first DFC-H2
- Unit will be tested with NG feed this year at FCE's Danbury headquarters
- Unit will be shipped to WWT facility for long term testing and operation on ADG
- Improved designs in progress
 - EHS (Electro-chemical H2 Separation)
 - Close coupled cooling / shift (low cost)
 - Load following operation

Proto-type Unit Currently Under Construction

EHS System Demonstration at University of CT

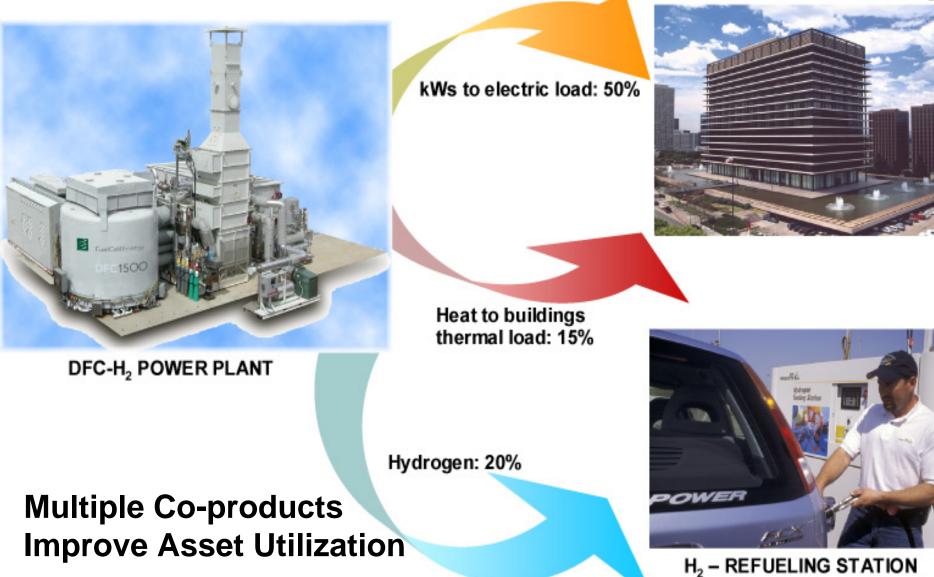

- The Demo Unit separates 6 lb/day H₂
 can refuel approximately one car per day
- >10,000 hours of operation to date
- >5,000 hours operation at FCE Danbury Laboratory
- Reliable operation: No EHS-related shutdowns

Celebration of Successful Completion of EHS Demo Project September 2007

Flexible Co-Production: Load Following

Relevance to California H2 Highway Initiative

- CARB & AQMD are promoting renewable H2 for Fuel Cell vehicles
- DFC fuel cells are clean; CARB '07 certified; and expected to have no change in emissions with byproduct H2
- Permitting of standard SMR H2 units is getting difficult due to concerns with NOx, SOx emissions and now CO2
- HES provides clean power and green H2
- Distributed H2 production eliminates emissions associated with H2 truck delivery


Conclusions

- Distributed co-production of Hydrogen and Power with a Carbonate (DFC[®]) fuel cell is attractive
- Current technology is competitive with small scale / distributed H2 production
- Integration of System with Renewable ADG is best method for Renewable H2 production
- Fuel cell's emissions remain extremely low even with H2 production, minimizing siting concerns

DFC-H2 Power Plant: Trigeneration System

Commercial/Industrial Building

