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Abstract 
The present work deals with the thermodynamic evaluation of gas turbine based combined cycle using the latest gas turbine e.g ABB 
GT26 gas turbine (advanced) burning hydrogen rich fuel. The bottoming cycle is also similar to the traditional HRSG based steam 
generation system. The proposed cycle burns hydrogen and the gas turbine exhaust gas generates steam in HRSG is allowed to expand 
in a separate steam turbine upto condenser pressure. 
The gas turbine (ABB GT26) is reheat type and the blade cooling is done by air bled from compressor. The same turbine is subjected 
to closed loop steam cooling. Parametric study has been performed on plant efficiency and specific work for various independent 
parameters such as TIT, rp,c, rp,hpt, RIT, blade temperature etc. It is observed that due to higher compressor pressure ratio involved in 
reheat gas turbine combined cycle and higher temperature of exhaust, the plant efficiency and specific work are higher with the 
advanced reheat gas/steam combined cycle over the simple combined cycle, The effect of hydrogen fuel instead of traditional NG is 
significant on cycle performance. Steam cooling offers better performance over air-cooling. 
 
Introduction 
Fuels derived from fossil sources will continue to play a major role in global energy supply in the near future. However, fossil fuels 
are the major source of Green-house gases like CO2. In light of the Nobel Peace Price awarded jointly to inter-Governmental Panel on 
Climate Control (IPCC) and US ex-vice-president Al-Gore for 2007 the chances are very bright that attention will shift to reduction 
and thereafter elimination of GHG from power generation. 
 In the last few years the great attention addressed to the greenhouse effect, has prompted the analysis of potential zero-emission 
power plants, by using hydrogen as fuel. Also with improvement to combustion technology other potential zero-emission power plants 
burning oxygen and any other hydrocarbon in order to produce a working fluid, composed of steam and carbon dioxide, at high 
temperature and high pressure, which can power conventional or advanced turbines. With improvements in carbon capture and turbine 
technology, efficiencies in the range of 50% are possible with nearly 100% carbon capture, thus providing a stiff challenge to the 
potential of hydrogen burning turbines. But hydrogen and electricity may become the favored twin energy carriers in a possible 
“greenhouse driven” future due to their lack of CO2 emissions at the point of use.  For this reason, in the technical works it is possible 
to find many examples of cycles based on hydrogen combustion; moreover if oxygen is used as oxidizer, it is possible to obtain semi-
closed cycles where the working fluid is H2O. These cycles seem to have great thermodynamic potentialities, but in these analyses it is 
very important to adopt some reasonable assumptions. In fact, by choosing very high values for the maximum pressure and 
temperature and neglecting the energy requirements for the compression and the production of oxygen and, these cycles can attain 
high efficiency 65–70% 
In this study thermodynamic evaluation of combined cycle with reheat in gas turbine using the latest gas turbine (Alstom GT26) 
burning hydrogen rich fuel has been attempted. This actual turbine is air-cooled. The study has been extended to consider it as  closed 
loop steam cooled. The bottoming cycle is triple pressure system with reheat. For evaluating the performance, mathematical modeling 
of various elements of combined cycle has been used for real situation. Parametric study has been carried out on plant efficiency and 
specific work for various independent parameters such as turbine inlet temperature, compressor pressure ratio, gas turbine reheating 
pressure ratio, reheater inlet temperature and turbine blade temperature, etc. 
In Japan a development program called WE-NET that is nearly complete has conceptualized and developed a cycle burning pure 
hydrogen with pure oxygen and expanding the resulting fluid i.e. steam at high pressure and temperature in a Rankine cycle type 
expander with great success. In the US a separate development program named Advanced Hydrogen Turbine Development program 
expected to run through year 2012 is in progress. Significant work has been done by many researchers in this area. M. Gambini et al., 
Wen-Ching Yang, Naoyuki Kayukawa, A. D. Rao et al. have done pioneering work in this area.  
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System Configuration 
 
Topping (Reheat Gas Turbine) and Bottoming Cycle   Fig. 1 shows the schematic of ABB GT26 gas turbine cycle in which 
reheating of HP exhaust gas is done in a second combustor and the reheated gas expands in IP/LP turbine. The compressor pressure 
ratio is 30 and turbine exhaust temperature is 913K. The exhaust mass flow rate is 562 kg/s, net efficiency (LHV) is 38.23% and net 
power output is 262 MW at ISO conditions. This turbine has been chosen as a reference cycle. The turbine is cooled by air (film 
cooling) bled from compressor. The same turbine burning hydrogen-blended natural gas is subjected to closed loop steam cooling and 
the effect of this observed on the performance. Ten percent hydrogen (by weight) is blended with natural gas in the proposed cycle. 
Pure oxygen has to be introduced in the combustor so as to ensure complete combustion of hydrogen. 

NOMENCLATURE 
C=compressor 
cc= combustion chamber 
cp  = specific heat at constant pressure, (kJ/kg.K) 
Fsa= correction factor for gas turbine blade surface area 
HPT=high pressure turbine 
IPT= intermediate pressure turbine 
LPT= low pressure turbine 
HRSG= heat recovery steam generator 
PP= pinch point 
Q=heat transfer rate, (kJ/kg.sec) 
m = mass flow rate of air, (kg/sec) 
rpc  = compressor pressure ratio 
RIT= reheat inlet temperature in topping cycle 
Sg= blade perimeter 
St = Average Stanton number at inlet condition 
T= temperature, (K) 
TIT= turbine inlet temperature in topping cycle, (K) 
t= pitch of blades 
Wplant = plant specific work, (kJ/kg) 

α =inlet flow discharge angle, (θ) 
ε =effectiveness 
(ηiso) film= isothermal effectiveness for film cooling 
η = efficiency, (percentage) 
NG= natural gas 
Suffixes 
bl= blade surface 
c= coolant 
D/A= deaerator 
in= inlet 
g= gas 
HP= high pressure 
IP= intermediate pressure 
LP= low pressure 
o = stagnation value 
out= outlet 
RH=reheat 

 
 The combustion chamber has to be modified suitable to burn hydrogen-blended natural gas. The blending of hydrogen with 
natural gas is done in a suitable mixer. For complete combustion of blended hydrogen, pure oxygen may be required so as to achieve 
its complete combustion. At turbine startup the gas turbine is run on natural gas until the turbine operation has stabilized. Subsequently 
hydrogen-blended natural gas is introduced for burning. 
 The bottoming cycle is a triple pressure reheat (3PR)  system (fig. 2) in each case. T-s diagram for combined cycle is shown 
in fig. 3 while T-Q diagram for the heat recovery steam generator (HRSG) is given in fig. 4. The cooling steam is taken from the 
exhaust of high pressure steam turbine and while cooling the gas turbine, coolant steam is superheated which is mixed with the 
superheated steam coming out from the HRSG and finally fed to IP turbine for expansion, The input data for the combined cycle is 
given in Table 1. 
 
 
Blade Cooling Model 
 In order to maintain the surfaces of turbine blades exposed to hot gas below a certain safe working temperature, blades are 
cooled by internal convection, film and transpiration mechanism employing different cooling medium such as air, water and steam. 
The cooling model used in this study is a refined version of Louis, et al. [1983]. The simple model for internal convection and film 
cooling (open loop) is given in fig. 5. The model assumes the cooling blade channel as heat exchanger operating at constant  
 
 
 
 
 
 
 



Final draft of paper for NHA’s 19th Annual Hydrogen Conference 2008 in USA                            Paper ID No.: 3744-2008 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
temperature and the coolant exit temperature is expressed as a function of heat exchanger effectiveness, ε. A concept of isothermal
 The mass flow rate of cooling fluid required in a blade row  is given by the following expression 
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Fig. 2. Schematic of a triple pressure reheat steam cycle (3PR) configuration 
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Fig. 1 Schematic of a reheated gas turbine  
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Here, ε =0.4, for film cooling, (ηiso)film =0.4 and for convection ,(ηiso)film=0.0 , Sg/tcosα =3.0 and To,bl=1123K, Stg=0.005. 
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Fig. 4 Temperature-entropy (T-s) representation of   a reheat gas, 
triple pressure reheat steam cycle (R3PR) configuration 
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The open loop cooling offers cooling and mixing losses while closed loop cooling only offers cooling loss of lower magnitude. The 
cooling loss in a row of blades results in a drop of stagnation temperature at constant pressure which is assumed to take place at the 
exit of cooled row. The mixing of coolant with primary flow causes stagnation pressure drop which is considered to take place at the 
exit of cooled row at constant stagnation temperature. The output of gas turbine is the sum of actual heat drop in each row of bladings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                        Fig. 5 Simple cooling model   (a) air film cooling  (b) internal convection cooling- steam 

 

METHODOLOGY AND RESULTS 
 Parametric study has been undertaken on plant efficiency and specific work of combined cycle for turbine inlet 
temperature(TIT), compressor pressure ratio(rpc) gas turbine  reheating pressure ratio (rpHPT), reheater temperature(RIT) and 
turbine blade temperature(Tbl). The methodology for carrying out such study is to consider GT26 gas turbine burning natural 
gas as reference topping cycle and its independent variables are allowed to vary to obtain the optimized results. The same gas 
turbine that burns hydrogen-blended natural gas is subjected to steam cooling and its effects have been studied and compared 
with air-cooling system. The bottoming cycle parameters have been taken as fixed values which are used in common practice 
based on inlet temperature of exhaust gas to HRSG and limit of dryness fraction from LP turbine exhaust . 
    Fig. 6 and 7 show the variation of basic and reheat  combined cycle efficiencies with specific work  for air and steam 
cooling for various values of rpc and TIT at rpHPT =2.8. From the results it is obvious that the plant efficiency and specific 
work are much higher in reheat combined cycle at any rpc and TIT as compared to simple combined cycle for both type of 
system i.e. burning one burning natural gas and other burning hydrogen-blended natural gas . For air cooled simple cycle, the 
optimum rpc and TIT lie around 20 and 1700K respectively whereas in the case of steam cooling these values show rising 
trends even beyond rpc=40 and TIT=1700K respectively. In the case of reheat combined cycle , these values show rising 
trends for both air cooling and  steam cooling even beyond   rpc=40 and TIT=1700K.  

 
 

 
 
 
 

Fig. 5 (b) 

Qnet 

mg, Tog ,  out 

 mc, Toc , ,in 

Hot 
gas 
flow 
path 

mg , Tog ,in 

 As 
Tobl 

 Coolant  Toc , out

Toc, out mc, Toc, ,in 

mg , Tog ,in 

(mg+mc), Tog,out 
 

Fig. 5 (a)  

Qnet 

Coolant  for  film cooling

Hot gas 
flow path

As 
Tobl 

 Coolant 

mailto:GT@$


Final draft of paper for NHA’s 19th Annual Hydrogen Conference 2008 in USA                            Paper ID No.: 
3744-2008 

Table 1.  Input data for analysis 
 

PARAMETER SYMBOL UNIT 
Gas Properties: Cp=ƒ(T) 

Enthalpy h=⌠cp(T) dT 
kJ/kg K 
kJ./kg 

Compressor  
 

i.  Polytropic   efficiency(ηpc)=92.0 
ii.Mechanical      efficiency(ηm)=98.5 

% 
% 

Combustor i. Combustor efficiency  (ηcomb)=98.5 
ii.Pressure loss  
 (ploss)=2.0% of     entry pressure 
iii. Proposed Fuel = Hydrogen enriched Natural  

Gas  (10% Hydrogen) (LHV)    = 42.0 
iv.Lower heating value of fuel blend (LHV) 

                                             = 51.690 
v. Traditional fuel NG (LHV) = 42.0 

% 
 
% 
 
MJ/kg 
 
MJ/kg 
MJ/kg 

Gas turbine i. Polytropic efficiency (ηpt)=93.0 
ii. Exhaust pressure=1.08 
iii. RIT=(TIT-100K)  

             if  TIT≥1600 
     =TIT   if TIT≤1500 

iv. Exhaust hood loss=4 

% 
bar 
 
K 
K 
K 

HRSG 
(Triple Pressure 
with reheat ) 

i. Effectiveness=98.0 
ii. Pressure loss= 10% of entry pressure 
iii. Stack (minimum temperature=353.0 
iv. H.P pressure = 160 
v. H.P superheat= 843.0 
vi. H.P steam 

exhaust pressure=40 
vii. Reheater loss=3% of entry pressure 
viii. I.P pressure= 35.0 
ix. I.P superheat=563.0 
x. L.P pressure=6.0 
xi. L.P superheat=473.0 
xii. Deaerator pressure=2.0 

xiii. Condenser pressure= 0.05 
xiv. Gas/steam approach temperature 

difference= 20.0 
xv. Pinch-point temperature difference= 10.0 

 

% 
% 
K 
bar 
K 
 
bar 
bar 
bar 
K 
bar 
K 
bar 
bar 
 
K 
K 

Steam turbine i. Isentropic efficiency= 88.0 HP, 92.0 IP/LP 
ii. Mechanical efficiency= 98.5 
iii. Minimum steam quality at LP exhaust 

   = 0.88 
 

% 
% 
 
dry 

Alternator Alternator efficiency=98.5  % 
 
Such trends are due to the combined effect of higher rpc, higher TIT, reheat, hydrogen blended fuel and cooling means. In the 
case of air cooling , turbine blade cooling  penalties such as mixing and cooling losses are predominant and increase with 
TIT whereas in the case of steam cooling mixing losses are absent Such trends are due to the combined effect of higher rpc, 
higher TIT, reheat, hydrogen blended fuel and cooling means. In the case of air cooling , turbine blade cooling  penalties 
such as mixing and cooling losses are predominant and increase with TIT whereas in the case of steam cooling mixing losses 
are absent and cooling losses are also very less. Further, the full flow of gas expands in the gas turbine in the case of steam 
cooling.  
The other important reason is the steam coolant used to cool the gas turbine gets reheated and mixed with the steam coming 
out from reheater of HRSG and so this amount of saved energy of HRSG generates extra steam and increases the bottoming 
cycle efficiency and in turn increases plant efficiency and specific work. The upward kink in the reheat cycle at and beyond 
TIT=1600K is due to the selection of RIT less than TIT by 100K. This saves the fuel and so upward kink in plant efficiency. 
The effect of hydrogen blended fuel is significant as exergy losses associated with burning of hydrogen are lower than those 
associated with natural gas. Also the LHV of the hydrogen-blended natural gas is higher than natural gas. 
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Fig. 6. Simple and reheat combined cycle plant efficiency versus plant specific work for different rpc and 

TIT for air cooled turbine burning natural gas 
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The effect of rpHPT on the plant efficiency and specific work is depicted in fig. 8. for both types of fuel types and cooling. The 
results show that a proper selection of rpHPT is essential. 
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Fig. 8. Plant efficiency and Specific work versus (rp)HPT for air and steam cooling 
 

The plant specific work in both types of fuels and cooling that goes on increasing with rpHPT while plant efficiency is the 
maximum around rpHPT 2.6 to 2.8. The effect of rpHPT on plant efficiency is appreciable in case of traditional fuel and air 
cooling whereas in the case of H2 blended fuel and steam cooling it is not appreciable. This is due to the fact that at higher 
values of rpHPT, the exhaust temperature of HP gas turbine is higher, so the fuel needed in reheater is less without much 
affecting steam cycle efficiency and compensating the cooling penalties and so in turn higher plant efficiency in the case of 
air cooling while in steam cooling , the combined effect of all variables is very less. Fachini et al. [6] has reported that 
combined technology of GT-26 and MS9001H could lead to plant efficiency around 62 percent. 

Fig. 9 shows the effect of turbine blade surface temperature (Tbl) on plant efficiency for air and steam cooling. For 
simple combined cycle it is gathered from the results that with increase in turbine blade temperature the plant efficiency 
increases with Tbl in the air cooling whereas in the steam cooling the increase in less. This is due to reduction in coolant 
penalties and less cooling requirement. 
 Table 2 depicts the summary of performance of combined cycle for simple and reheat system for both type of fuels 
and cooling scheme. 

Conclusion: 
Reheat gas/steam turbine cycle with high compressor pressure ratio yields higher efficiency and specific work over 

simple combined cycle. Steam cooling coupled with hydrogen blended fuel offers better performance over air cooling in 
terms of plant efficiency and specific work for both simple and reheat combined cycle. In reheat system rpHPT plays an 
important role in deciding the maximum plant efficiency and specific work and its value lies around 2.8 to 3.0 for both 
cooling means. The selection of RIT in relation to TIT is an important consideration in achieving the maximum possible 
plant efficiency especially at higher TIT. Proposed hydrogen-blended natural gas burning system offers around 64 percent 
plant efficiency which is significant and around 25% increased plant specific work. The use of proposed hydrogen blended 
natural gas offers great potential. 
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Fig. 9. Plant efficiency versus blade temperature for simple combined cycle 

 
  
 

Table 2.  A Summary of Performance of Combined Cycle 
 

Traditional Air Cooled turbine burning 
NG 

Steam Cooled turbine burning hydrogen blended NG Parameter 

Simple Simple Reheat Simple Simple Reheat Reheat 
rpc 15.0 30.0 30.0 15.0 30.0 30.0 40 

TIT  (K) 1700K 1700K 1700K 1700K 1700K 1700K 1700K 

RIT (K)   1600K -- -- 1600K 1600K 

(rp)HPT   2.8 -- -- 2.8 2.8 

ηplant (%) 52.0408 54.71 59.4793 56.751 60.3 
 

62.2706 63.32 

Wplant 
(kJ/kg) 

623.426 579.938 749.95 801.58 757.32 964.5144 
 

935.23 

 
 
 
 
 
 
 
 
 
 
 
. 
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