

Silver and Silver-Manganese Cathode Catalysts for Alkaline Fuel Cells

Presenter: Nigel A. Knott

Prof. D. W. Kirk and Prof. S. J. Thorpe

Introduction

- Background
 - Alkaline fuel cell cathode catalysts
- Objectives
- Silver-manganese bi-metallic alloy
 - Linear sweep voltammetry
 - Cyclic sweep (Ag₂O reduction)
 - X-ray photoelectron spectroscopy (XPS)
- Nano-structured carbon nanofiber system
 - Image and composition analysis
 - Linear sweep voltammetry
- Conclusions

Background

In alkaline fuel cells (AFCs) the cathode electrode is the

main contributor to losses in cell performance

Background

Silver and manganese dioxide show comparable oxygen

reduction catalytic activities to platinum in alkaline electrolyte

4

Objectives

- Study two systems of silver and manganese to determine the synergistic effects of these two catalysts coupled together towards the kinetics and mechanism of the oxygen reduction reaction (ORR)
 - Silver-manganese bi-metallic alloy system
 - Nano-structured catalyst system of electrolessly deposited silver and manganese dioxide supported on carbon nanofibers **NIVERSITY of TORONTO**

Ag-Mn Alloy Test Program

- 3 different alloy systems: 5, 10 and 15 wt% manganese in silver by vacuum arc melting
 - Characterized samples by SEM, EDX and XPS
- Electrochemical measurements of pure silver and silver-manganese alloys
 - Linear potential step and hold testing in oxygen reduction reaction region
 - Cyclic voltammetry
 - Obtain potential onset of ORR, maximum current density and Tafel data

UNIVERSITY & TORONTO

8

NHA Annual Hydrogen Conference 2007

9

NHA Annual Hydrogen Conference 2007

11

ORR Results - Summary

Alloy	Maximum Current (mA/cm ²)	Onset of ORR (V vs Hg/HgO)	Tafel Slope (mV/dec)	Cathodic Transfer Coefficient
Pure Silver	~ 65	~ + 0.075	70 (small η) & 140 (large η)	1 (small η) & 0.5 (large η)
Ag- 15wt%Mn	~ 51	~ +0.030	60	~1.16
Ag- 10wt%Mn	~ 60	~ +0.030	60	~1.16
Ag- 5wt%Mn	~ 77	~ +0.050	60	~1.16

ORR Mechanism

- Silver shows two distinct Tafel regions
 - 4 e⁻ ORR process at high overpotentials

 $(O_2 + H_2O + 4 e^- \rightarrow 4 OH^-)$

– 2 e⁻ ORR process at low overpotentials

1. $(O_2 + H_2O + 2 e^- \rightarrow HOO^- + OH^-)$

2. (HOO⁻ + H₂O + 2 e⁻ \rightarrow 3 OH⁻)

- Manganese containing alloys show nearly identical Tafel slopes and cathodic transfer coefficients
 - Mixed ORR process

Silver – XPS Spectra

binding energy **Decrease of 0.2 eV for** manganese containing alloys

Manganese XPS Spectra

Mn 2p peaks show matching binding energies and satellite peaks corresponding to MnO (nonactive).

• Manganese surface concentration depleted on surface:

- 15 wt% → 10.7 wt%
- 5 wt% → 0.45 wt%

JNIVERSITY & TORONTO

- High Mn (10 and 15wt%) alloys have non-active MnO sites on surface
 - Decreases maximum current density
- Low Mn (5 wt%) alloy has limited (~0.5 wt% Mn) on surface
 - Does not deplete active sites
 - Highest current density

JNIVERSITY of TORONTO

Ag-Mn Alloy Conclusions

<u>Ag- 5 wt%Mn</u>

VERSITY of TORONTO

- Manganese alloying decreases silver's d orbital binding energy
- Cathodic overpotential for Ag₂O reduction increases with increasing manganese concentration
- Manganese modifies silver's d
 orbital electronic structure
 - Increases the bond strength of Ag-O
 - Increasing efficiency of O-O bond cleavage

Introduction to Nano System

- Silver and manganese dioxide catalysts were electrolessly deposited on carbon nanofibers
- Nanofibers range in diameter from ~50-150 nm
- Extremely high surface area
- Direct application to fuel cell electrode

Ag Deposition

- Silver deposited using silver nitrate as precursor
- Average deposited silver particle size ~ 35-45 nm
- Primarily spherical particles Volmer-Weber type growth

Ag Deposition – EDX Line Scan

 EDX line scan confirming silver deposited on CNF

Ag + MnO₂ Deposition

- Silver and manganese dioxide deposited with silver permanganate as precursor – reduced with hydrazine
- Silver exhibited spherical and dendritic type growth
- Manganese dioxide appeared to deposit as a thin layer across the entire nanofiber (confirmed by EDX mapping)

JNIVERSITY & TORONTO

Ag + MnO₂ Deposition – EDX Mapping

Electrode Preparation

Electrode composition:

- 30 wt% solid PTFE
- 60 wt% CNF
- 10 wt% metal catalyst
- Electrode synthesis:
- rolling, pressing and heating

ORR Results

- 10wt% Ag CNFs showed highest activity
- Same magnitude of maximum current density as solid polycrystalline electrodes, but at 1000X less loading
- Manganese dioxide coated CNFs have the same activity as non-loaded CNFs

Conclusions

Alloy System

- Ag-5wt%Mn alloy showed the highest catalytic activity towards ORR (15-20% better than Pure Ag)
 - Activity increase due to electronic structure effects of manganese alloying with silver

Nano System

- 10 wt% Ag + CNFs showed highest activity towards ORR
 - Manganese oxide coated samples showed identical activity to CNFs; non-active manganese oxide electrolessly deposited
 - Higher current density than pure Ag with 1000X less mass

Potential Applications

- Nano ball-mill Ag-5%Mn alloy
 - Incorporate as catalyst in CNF+PTFE alkaline fuel cell cathode electrode
- Use silver electroless deposition on CNFs/CNTs for AFC cathode electrode
- Develop a deposition process for Ag + 1 to 5 wt% Mn onto CNFs/CNTs

Acknowledgments

- Thanks to
 - Supervisors: Prof. Thorpe and Prof. Kirk
 - ESEG Group
 - Ryan Gilliam, Paulo Borges, Holly Wonch, Mike Kostowskyj, Ella Pakravan
 - Materials Science and Engineering Dept. U of T
 - John Calloway, Sal Boccia, Dr. Dan Grozea
 - Centre for Nanostructure Imaging
 - Dr. Neil Coombs and Ilya Gourevich
 - OGSST and U of T Open Fellowship

