

Infrastructure Analysis as Part of the European Hydrogen Energy Roadmap (HyWays)

Christoph Stiller, LBST
Philipp Seydel, FhG-ISI
Ulrich Bünger, LBST
Martin Wietschel, FhG-ISI

NHA Conference San Antonio/TX, 19-22 MAR 2007

Outline

- Introduction and motivation
- Infrastructure analysis methodology
- European hydrogen map
- Feedstocks and production
- Role of transport options
- Costs of infrastructure build-up
- Conclusions

Introduction and motivation

- HyWays: Hydrogen roadmap for Europe on the basis of in-depth investigation of 10 countries
- How can the visions be implemented?
- Which role do the technology options play?
- What are the costs of an integrated supply infrastructure?

=> Input for development of policies

Infrastructure analysis methodology

Scenarios

- Concentrated / distributed users
- Early / late transit road network
- Feedstock bounds / no bounds
- High / medium / low penetration rate
- 20% LH₂ demand / no LH₂ demand

European hydrogen map – Early user centres and corridors

- Densely populated areas selected for early markets in all countries
- Some remote areas / islands selected in FI, GR, UK, PL
- Most decisive:
 availability of experts,
 political commitment,
 existing demo projects
 and availability of
 resources

European hydrogen map – Fuelling stations 2014 (medium penetration scenario)

European hydrogen map – Fuelling stations 2017 (medium penetration scenario)

European hydrogen map – Fuelling stations 2021 (medium penetration scenario)

European hydrogen map – Fuelling stations 2027 (medium penetration scenario)

Feedstocks and production Applied feedstocks (aggregated)

- Based on stakeholder input
- In 2027: >50% fossil fuels w/CCS
- ~ 25% renewables (wind, biomass, solar)
- Balance: Grid electricity*, nuclear, by-product

^{*} Mix and price country-specific

Feedstocks and production Country-specific findings

- Strong use of renewables for H₂ production: Norway, Greece, Spain (huge resources, low population density)
- Nuclear energy for H₂ production expected in France, Finland, Poland
- High share of coal and NG in Germany, Netherlands, Poland, Italy
- Excess grid electricity envisaged in Norway, France, Finland, Germany

Role of transport options Shares resulting from infrastructure model HyWays

Sensitivities: Transport distances, fuelling station turnover, demand for LH₂, energy prices, density of fuelling stations

Role of transport options Decision matrix (Sensitivity Analysis)

Role of transport options Onsite and LH2

- Onsite: initial phase, permanently in sparsely populated, remote areas. But: initially low FS utilisation, later high energy prices
- LH₂ trucks: Strongly in the initial phase (NB: 20% LH₂ demand assumed without LH₂ demand, the picture changes!). Later mainly for remote locations, competing with onsite

Role of transport options Pipeline and CGH2

- Pipelines: Solution for central hydrogen production and transport to demand areas.
 Distribution pipelines in densely populated areas and for larger fuelling stations
- CGH₂ trucks: Mainly during transition phase from LH₂ to pipeline, but also an option for local distribution of produced hydrogen for less densely populated areas

Costs of infrastructure build-up Cumulated investment and spec. H2 costs HyWays

■ Production investment
■ Transport investment
■ Refuelling investment
■ Specific hydrogen costs

- Low total investment in the initial phase
- Specific costs of 11-16 €ct/kWh (3.7-5.4 €/GGE) from second phase
 - Transport,
 distribution and
 refueling contribute
 significantly to
 investment

Costs of infrastructure build-up Cash flow analysis

Assumptions:

Fuel: WETO-H2 oil prices (\$66 by 2030)

Fleet: 12 years vehicle life time;

1000-2000 € extra / vehicle tolerable

Fuel Cash Flow:

"Conventional fuel costs MINUS H2 fuel costs"

Fleet Cash Flow:

"Conventional vehicle costs MINUS H2 vehicle costs"

—Fuel Cash Flow ——Fleet Cash Flow (+1000€) ——Overall Cash Flow • • • Fleet Cash Flow (+2000€)

www.HyWays.de

Conclusions - Infrastructure

- Initiation of hydrogen use mostly in populated areas (but also some remote areas)
- Initially, LH₂ trucks (due to LH₂ end-demand) and onsite are predominant supply options
- Later, pipelines gain ground in densely populated areas
- In the transition to pipelines, CGH₂ trucks for distribution fill a gap
- Outlook: Pipeline for dense areas, CGH₂ trucks for less dense areas, LH₂/onsite for remote areas
- ⇒ All supply options play a role under specific conditions

Conclusions - Economic

- High initial specific hydrogen costs, but low economic impact of that.
- Hydrogen costs below 6 €/GGE from second phase (i.e. 500,000 cars EU25-wide)
- H2+FCV can become economically competitive with other fuels by 2025-2030 (supposed 1000 € extra costs per vehicle are tolerable)
- Or even ~5 years earlier, assuming higher oil prices, taxation measures considering externalities or the customer's willingness to pay more for an environmentally friendly car.
- The faster the market penetration, the earlier the break-even and the higher the savings!

Acknowledgement(s)

HyWays is an integrated project, co-funded by the participating research institutes, companies and national agencies and by the European Commission (EC) under the 6th Framework Programme [contract N° 502596].

Thanks for your attention!